首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近几年,稀土上转换荧光纳米材料作为新型的荧光探针受到研究者的广泛关注,其优势在于光化学稳定性好、发射谱带窄、荧光寿命长、Stokes位移大等.同时,它利用近红外激光器作为激发光源,组织穿透能力好、对生物组织的损伤小、几乎没有背景荧光,使其应用于生物活体荧光成像成为可能.本文主要综述了最近稀土上转换荧光纳米材料在制备与生物应用方面的研究进展.  相似文献   

2.
活体动物体内光学成像技术的研究进展及其应用   总被引:2,自引:0,他引:2  
王怡  詹林盛 《生物技术通讯》2007,18(6):1033-1035
活体动物体内光学成像是利用基因改构进行内源性成像试剂或外源性成像试剂标记细胞、蛋白或DNA,从而非侵入性地报告小动物体内的特定生物学事件的技术。活体成像可以直观灵敏地监测基因的表达模式、标记和示踪细胞、探讨蛋白间的相互作用,因而这一技术被广泛地用于分析基因的表达模式、评价基因治疗效果、评估肿瘤的发生和转移、监测移植器官等。简要综述了现有活体动物体内光学成像技术的基本原理、技术进展和相关应用。  相似文献   

3.
GFP标记的肿瘤生长和转移的整体荧光成像   总被引:6,自引:0,他引:6  
Fugene 6脂质体介导pEGFP-C1转染人源肺癌细胞(SPC-A1),经G418抗性筛选和96孔板有限稀释获得稳定高表达GFP的单克隆细胞株SPC-A1-EGFP。裸鼠腹腔注射SPC-A1-EGFP细胞建立自发转移模型;裸鼠尾静脉注射SPC-A1-EGFP细胞建立实验转移模型。利用整体光学成像系统(wllole-body optical imaging system)对荷瘤鼠整体荧光成像。结果表明,整体光学成像系统可实时非侵入监测腹腔肿瘤生长和扩散过程,通过胸腔皮瓣窗chest—wall skin-flap window)可低侵入检测肺转移。该研究为在体监测原位移植瘤的自发转移和发现抗肿瘤新药物提供了良好实验平台。  相似文献   

4.
Circularly permuted fluorescent proteins (FPs) have a growing number of uses in live cell fluorescence biosensing applications. Most notably, they enable the construction of single fluorescent protein‐based biosensors for Ca2+ and other analytes of interest. Circularly permuted FPs are also of great utility in the optimization of fluorescence resonance energy transfer (FRET)‐based biosensors by providing a means for varying the critical dipole–dipole orientation. We have previously reported on our efforts to create circularly permuted variants of a monomeric red FP (RFP) known as mCherry. In our previous work, we had identified six distinct locations within mCherry that tolerated the insertion of a short peptide sequence. Creation of circularly permuted variants with new termini at the locations corresponding to the sites of insertion led to the discovery of three permuted variants that retained no more than 18% of the brightness of mCherry. We now report the extensive directed evolution of the variant with new termini at position 193 of the protein sequence for improved fluorescent brightness. The resulting variant, known as cp193g7, has 61% of the intrinsic brightness of mCherry and was found to be highly tolerant of circular permutation at other locations within the sequence. We have exploited this property to engineer an expanded series of circularly permuted variants with new termini located along the length of the 10th β‐strand of mCherry. These new variants may ultimately prove useful for the creation of single FP‐based Ca2+ biosensors.  相似文献   

5.
    
Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue‐shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP‐labeled nucleus and tdTomato‐labeled plasma membrane, time‐lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two‐color protein labeling in living cells and in two‐color tumor labeling in mice.  相似文献   

6.
自从绿色荧光蛋白(GFP)被发现以来,荧光蛋白在生物医学领域已经成为一种重要的荧光成像工具.随着红色荧光蛋白DsRed的出现,各种优化的DsRed突变体和远红荧光蛋白也不断涌现.其中荧光蛋白生色团的形成机制对改建更优的荧光蛋白变种影响很大,对于红色荧光蛋白而言,大多数的红色荧光蛋白的生色团类型为DsRed类似生色团,在此基础上又出现了Far-red DsRed类似生色团.目前,含DsRed类似生色团的荧光蛋白主要有单体红色荧光蛋白、光转换荧光蛋白、斯托克斯红移蛋白、荧光计时器等.这些优化的荧光蛋白作为分子探针可以实现对活细胞、细胞器或胞内分子的时空标记和追踪,已经在生物工程学、细胞生物学、基础医学领域得到广泛应用.本文综述了含DsRed类似生色团的荧光蛋白的研究进展及其应用,以及由此发展起来的远红荧光蛋白在活体显微成像技术中的应用,并展望了荧光探针技术研究的新方向.  相似文献   

7.
    
《Neuron》2023,111(10):1547-1563.e9
  相似文献   

8.
An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158–163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 °C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 °C of HPH to 53 and 58.8 °C respectively. Specific activities and steady-state kinetics measured at 25 °C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.  相似文献   

9.
    
We present one‐ and two‐photon‐absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore–based single‐domain near‐infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV‐based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red‐shift tunability of currently available BV‐based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two‐photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.   相似文献   

10.
    
Discoveries of major importance in life sciences and preclinical research are linked to the invention of microscopes that enable imaging of cells and their microstructures. Imaging technologies involving in vivo procedures using fluorescent dyes that permit labelling of cells have been developed over the last two decades. Fibered confocal fluorescence microscopy (FCFM) is an imaging technology equipped with fiber‐optic probes to deliver light to organs and tissues of live animals. This enables not only in vivo detection of fluorescent signals and visualization of cells, but also the study of dynamic processes, such cell proliferation, apoptosis and angiogenesis, under physiological and pathological conditions. This will allow the diagnosis of diseased organs and tissues and the evaluation of the efficacy of new therapies in animal models of human diseases. The aim of this report is to shed light on FCFM and its potential medical applications and discusses some factors that compromise the reliability and reproducibility of monitoring biological processes by FCFM. This report also highlights the issues concerning animal experimentation and welfare, and the contributions of FCFM to the 3Rs principals, replacement, reduction and refinement.   相似文献   

11.
The potential use of proteins in device applications has advanced in large part due to significant advances in the methods and procedures of protein engineering, most notably, directed evolution. Directed evolution has been used to tailor a broad range of enzymatic proteins for pharmaceutical and industrial applications. Thermal stability, chemical stability, and substrate specificity are among the most common phenotypes targeted for optimization. However, in vivo screening systems for photoactive proteins have been slow in development. A high-throughput screening system for the photokinetic optimization of photoactive proteins would promote the development of protein-based field-effect transistors, artificial retinas, spatial light modulators, photovoltaic fuel cells, three-dimensional volumetric memories, and optical holographic processors. This investigation seeks to optimize the photoactive protein bacteriorhodopsin (BR) for volumetric optical and holographic memories. Semi-random mutagenesis and in vitro screening were used to create and analyze nearly 800 mutants spanning the entire length of the bacterio-opsin (bop) gene. To fully realize the potential of BR in optoelectronic environments, future investigations will utilize global mutagenesis and in vivo screening systems. The architecture for a potential in vivo screening system is explored in this study. We demonstrate the ability to measure the formation and decay of the red-shifted O-state within in vivo colonies of Halobacterium salinarum, and discuss the implications of this screening method to directed evolution. These authors contributed equally to this work.  相似文献   

12.
DNA重排及体外分子进化   总被引:1,自引:1,他引:1  
DNA重排是目前为止最简便、最有效的体外定向进化技术,可以对单一基因、质粒、代谢途径、部分甚至整个基因组进行改造。本综述了DNA重排的基本原理、特点、与其它体外进化技术的不同,着重介绍了其在体外分子进化上的广泛应用,并对应用前景进行了展望。  相似文献   

13.
    
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
    
Prolonged stability is a desired property for the biotechnological application of enzymes since it allows its reutilization, contributing to making biocatalytic processes more economically competitive with respect to chemical synthesis. In this study, we have applied selection by folding interference at high temperature in Thermus thermophilus to obtain thermostable variants of the esterase I from Pseudomonas fluorescens (PFEI). The most thermostable variant (Q11L/A191S) showed a melting temperature (Tm) of 77.3 ± 0.1°C (4.6°C higher than the wild-type) and a half-life of over 13 hr at 65°C (7.9-fold better than the wild-type), with unchanged kinetic parameters. Stabilizing mutations Q11L and A191S were incorporated into PFEI variant L30P, previously described to be enantioselective in the hydrolysis of the (−)-enantiomer of the Vince lactam. The final variant Q11L/L30P/A191S showed a significant improvement in thermal stability (Tm of 80.8 ± 0.1°C and a half-life of 65 min at 75°C), while retaining enantioselectivity (E > 100). Structural studies revealed that A191S establishes a hydrogen bond network between a V-shaped hairpin and the α/β hydrolase domain that leads to higher rigidity and thus would contribute to explaining the increase in stability.  相似文献   

15.
    
《Journal of lipid research》2016,57(10):1934-1947
  相似文献   

16.
  总被引:1,自引:0,他引:1  
Molecular biosensors are devices of molecular size that are designed for sensing different analytes on the basis of biospecific recognition. They should provide two coupled functions - the recognition (specific binding) of the target and the transduction of information about the recognition event into a measurable signal. The present review highlights the achievements and prospects in design and operation of molecular biosensors for which the transduction mechanism is based on fluorescence. We focus on the general strategy of fluorescent molecular sensing, construction of sensor elements, based on natural and designed biopolymers (proteins and nucleic acids). Particular attention is given to the coupling of sensing elements with fluorescent reporter dyes and to the methods for producing efficient fluorescence responses.  相似文献   

17.
The linker histone H1 has a fundamental role in DNA compaction. Although models for H1 binding generally involve the H1 C‐terminal tail and sites S1 and S2 within the H1 globular domain, there is debate about the importance of these binding regions and almost nothing is known about how they work together. Using a novel fluorescence recovery after photobleaching (FRAP) procedure, we have measured the affinities of these regions individually, in pairs, and in the full molecule to demonstrate for the first time that binding among several combinations is cooperative in live cells. Our analysis reveals two preferred H1 binding pathways and we find evidence for a novel conformational change required by both. These results paint a complex, highly dynamic picture of H1–chromatin binding, with a significant fraction of H1 molecules only partially bound in metastable states that can be readily competed against. We anticipate the methods we have developed here will be broadly applicable, particularly for deciphering the binding kinetics of other nuclear proteins that, similar to H1, interact with and modify chromatin.  相似文献   

18.
    
A major goal for in vivo biology is to develop models which can express multiple colors of fluorescent proteins in order to image many processes simultaneously in real time. Towards this goal, the cyan fluorescent protein (CFP) nude mouse was developed by crossing non‐transgenic nude mice with the transgenic CK/ECFP mouse in which the β‐actin promoter drives expression of CFP in almost all tissues. In crosses between nu/nu CFP male mice and nu/+ CFP female mice, approximately 50% of the embryos fluoresced blue. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescent signals of all internal organs which vary in intensity. Orthotopic implantation of XPA‐1 human pancreatic cancer cells expressing red fluorescent protein (RFP); or green fluorescent protein (GFP) in the nucleus and RFP in the cytoplasm, was performed in female nude CFP mice. Color‐coded fluorescence imaging of these human pancreatic cancer cells implanted into the bright blue fluorescent pancreas of the CFP nude mouse afforded novel insight into the interaction of the pancreatic tumor and the normal pancreas, in particular the strong desmoplastic reaction of the tumor. The naturally enhanced blue fluorescence of the pancreas in the CFP mouse serves as an ideal background for color‐coded imaging of the interaction of implanted cancer cells and the host. The CFP nude mouse will provide unique understanding of the critical interplay between the cancer cells and their microenvironment. J. Cell. Biochem. 107: 328–334, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
    
Cell death plays a critical role in health and homeostasis as well as in the pathogenesis and treatment of a broad spectrum of diseases and can be broadly divided into two main categories: apoptosis, or programmed cell death, and necrosis, or acute cell death. While these processes have been characterized extensively in vitro, label‐free detection of apoptosis and necrosis at the cellular level in vivo has yet to be shown. In this study, for the first time, fluorescence lifetime imaging microscopy (FLIM) of intracellular reduced nicotinamide adenine dinucleotide (NADH) was utilized to assess the metabolic response of in vivo mouse epidermal keratinocytes following induction of apoptosis and necrosis. Results show significantly elevated levels of both the mean lifetime of NADH and the intracellular ratio of protein bound‐to‐free NADH in the apoptotic compared to the necrotic tissue. In addition, the longitudinal profiles of these two cell death processes show remarkable differences. By identifying and extracting these temporal metabolic signatures, apoptosis in single cells can be studied in native tissue environments within the living organism.

  相似文献   


20.
    
Optical imaging is a cornerstone of modern oncologic research. The aim of this study is to determine the value of a new tool to enhance bioluminescent and fluorescent sensitivity for facilitating very‐low‐level signal detection in vivo. Experimental: For bioluminescent imaging experiments, a luciferase expressing breast cancer cell line with metastatic phenotype was implanted orthotopically into the mammary fat pad of mice. For fluorescent imaging experiments, near‐infrared (NIR) nanoparticles were injected intratumorally and subcutaneously into mice. Images were compared in mice with and without application of the ‘Gator’ Mouse Suit (GMS). Results: The GMS was associated with early detection and quantification of metastatic bioluminescent very‐low‐level signal not possible with conventional imaging strategies. Similarly, NIR nanoparticles that were undetectable in locations beyond the primary injection site could be visualized and their very‐low‐level signal quantifiable with the aid of the GMS. Conclusion: The GMS is a device which has tremendous potential for facilitating the development of bioluminescent models and fluorescent nanomaterials for translational oncologic applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号