首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
André Eid 《Epigenetics》2016,11(6):389-397
An intense period of chromatin remodeling takes place after fertilization in mammals, which is thought necessary for epigenetic reprogramming to start a new developmental program. While much attention has been given to the role of Polycomb Repressive Complex 2 (PRC2) and to canonical PRC1 complexes during this process, little is known as to whether there is any contribution of non-canonical PRC1 in shaping the chromatin landscape after fertilization. Here, we first describe in detail the temporal dynamics and abundance of H2A ubiquitylation (H2AK119ub), a histone modification catalyzed by PRC1, during pre-implantation mouse development. In addition, we have analyzed the presence of the 2 characteristic subunits of non-canonical PRC1 complexes, RYBP and its homolog YAF-2. Our results indicate that H2AK119ub is inherited from the sperm, rapidly removed from the paternal chromatin after fertilization, but detected again prior to the first mitosis, suggesting that PRC1 activity occurs as early as the zygotic stage. RYBP and YAF-2, together with the non-canonical subunit L3MBTL2, are all present during pre-implantation development but show different temporal dynamics. While RYBP is absent in the zygote, it is strongly induced from the 4-cell stage onwards. YAF-2 is inherited maternally and localizes to the pericentromeric regions in the zygote, is strongly induced between the 2- and 4-cell stages but then remains weak to undetectable subsequently. All together, our data suggest that non-canonical PRC1 is active during pre-implantation development and should be regarded as an additional component during epigenetic reprogramming and in the establishment of cellular plasticity of the early embryo.  相似文献   

2.
3.
4.
Polycomb Repressive Complex 2 (PRC2) catalyzes histone H3 lysine 27 tri-methylation (H3K27me3), an epigenetic modification associated with gene repression. H3K27me3 is enriched at the promoters of a large cohort of developmental genes in embryonic stem cells (ESCs). Loss of H3K27me3 leads to a failure of ESCs to properly differentiate, making it difficult to determine the precise roles of PRC2 during lineage commitment. Moreover, while studies suggest that PRC2 prevents DNA methylation, how these two epigenetic regulators coordinate to regulate lineage programs is poorly understood. Using several PRC2 mutant ESC lines that maintain varying levels of H3K27me3, we found that partial maintenance of H3K27me3 allowed for proper temporal activation of lineage genes during directed differentiation of ESCs to spinal motor neurons (SMNs). In contrast, genes that function to specify other lineages failed to be repressed in these cells, suggesting that PRC2 is also necessary for lineage fidelity. We also found that loss of H3K27me3 leads to a modest gain in DNA methylation at PRC2 target regions in both ESCs and in SMNs. Our study demonstrates a critical role for PRC2 in safeguarding lineage decisions and in protecting genes against inappropriate DNA methylation.  相似文献   

5.
6.
7.
The murine visceral endoderm is an extraembryonic cell layer that appears prior to gastrulation and performs critical functions during embryogenesis. The traditional role ascribed to the visceral endoderm entails nutrient uptake and transport. Besides synthesizing a number of specialized proteins that facilitate uptake, digestion, and secretion of nutrients, the extraembryonic visceral endoderm coordinates blood cell differentiation and vessel formation in the adjoining mesoderm, thereby facilitating efficient exchange of nutrients and gases between the mother and embryo. Recent studies suggest that in addition to this nutrient exchange function the visceral endoderm overlying the egg cylinder stage embryo plays an active role in guiding early development. Cells in the anterior visceral endoderm function as an early organizer. Prior to formation of the primitive streak, these cells express specific gene products that specify the fate of underlying embryonic tissues. In this review we highlight recent investigations demonstrating this dual role for visceral endoderm as a provider of both nutrients and developmental cues for the early embryo.  相似文献   

8.
9.
L Guo  ST Qi  DQ Miao  XW Liang  H Li  XH Ou  X Huang  CR Yang  YC Ouyang  Y Hou  QY Sun  Z Han 《PloS one》2012,7(7):e40528
Parathyroid hormone-like hormone (PTHLH) was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcemia in malignancies in the 1980s. Previous studies demonstrated that PTHLH is expressed in multiple tissues and is an important regulator of cellular and organ growth, development, migration, differentiation, and survival. However, there is a lack of data on the expression and function of PTHLH during preimplantation embryonic development. In this study, we investigated the expression characteristics and functions of PTHLH during mouse preimplantation embryonic development. The results show that Pthlh is expressed in mouse oocytes and preimplantation embryos at all developmental stages, with the highest expression at the MII stage of the oocytes and the lowest expression at the blastocyst stage of the preimplantation embryos. The siRNA-mediated depletion of Pthlh at the MII stage oocytes or the 1-cell stage embryos significantly decreased the blastocyst formation rate, while this effect could be corrected by culturing the Pthlh depleted embryos in the medium containing PTHLH protein. Moreover, expression of the pluripotency-related genes Nanog and Pou5f1 was significantly reduced in Pthlh-depleted embryos at the morula stage. Additionally, histone acetylation patterns were altered by Pthlh depletion. These results suggest that PTHLH plays important roles during mouse preimplantation embryonic development.  相似文献   

10.
11.
Heat shock protein (Hsp) 25 is a member of the small Hsp family. High levels of Hsp25 can be detected in skin. During adult epidermis differentiation, the concentration of Hsp25 increases as the distance of keratinocytes from the basal layer increases, in parallel with the extent of keratinization. We previously showed that Hsp25, mouse keratin (MK) 5, and MK14 participated in the formation of characteristic ring-shaped aggregates during the differentiation of the PAM212 keratinocyte cell line. We suggested that Hsp25 was involved in the disorganization of the MK5-MK14 keratin network before the establishment of the MK1-MK10 keratin network at the beginning of epidermis stratification. In this study, we have investigated the distribution of Hsp25 and keratins throughout skin development. We demonstrate that the distribution of Hsp25 and MK5 in the epidermis at the beginning of stratification and before keratinization is similar to that observed in PAM212 keratinocytes. These results indicate that there is a strong correlation between the mechanism we described ex vivo and the events taking place in vivo. Moreover, we show that Hsp25 is produced in different cell types in the epidermis and in the hair follicle at different stages of their development. Thus, our results suggest that Hsp25 is involved in more than one process during skin development.  相似文献   

12.
13.
Polycomb group (PcG) proteins play essential roles in animal and plant life cycles by controlling the expression of important developmental regulators. These structurally heterogeneous proteins form multimeric protein complexes that control higher order chromatin structure and, thereby, the expression state of their target genes. Once established, PcG proteins maintain silent gene expression states over many cell divisions providing a molecular basis for a cellular 'memory.' PcG proteins are best known for their role in the control of homeotic genes in Drosophila and mammals. In addition, they play important roles in the control of cell proliferation in vertebrate and invertebrate systems. Recent studies in plants have shown that PcG proteins regulate diverse developmental processes and, as in animals, they affect both homeotic gene expression and cell proliferation. Thus, the function of PcG proteins has been widely conserved between the plant and animal kingdoms.  相似文献   

14.
APC2 (previously known as APCL), a molecule closely related to the adenomatous polyposis coli (APC) tumor suppressor, can deplete cytoplasmic beta-catenin, like APC itself. Recently, it has been shown that APC2 may regulate the localization of p53 and the microtubule stability and/or extension. Although it has been reported that APC2 mRNA is expressed in human brain, the anatomical and ontogenic expression patterns remain unclear. The purpose of this study was to investigate the distribution of mouse Apc2 during mouse development. In the adult brain, Apc2 is expressed predominantly in neurons and throughout the brain. Northern blot analysis demonstrated a high level of Apc2 expression in embryonic and early postnatal brain. Ontogenic analysis has indicated that Apc2 is expressed in neural tissue, including the peripheral nervous system. During development of cortex, retina and cerebellum, Apc2 is expressed in post-mitotic cells. These findings suggest that Apc2 may contribute to the development of neuronal cells.  相似文献   

15.
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.  相似文献   

16.
17.
Hemenway CS  Halligan BW  Gould GC  Levy LS 《Gene》2000,250(1-2):31-40
Betaine-homocysteine S-methyltransferase (BHMT) is one of the enzymes involved in the branch point metabolism of homocysteine. Elevated levels of plasma homocysteine may be a risk factor for the development of vascular disease; however, whether BHMT has a significant role in the regulation of plasma levels of homocysteine remains to be determined. As a prelude to creating a mouse strain deficient in BHMT activity, we screened a lambda library containing mouse SvJ 129 genomic DNA for the mouse BHMT gene using random probes made from the human cDNA. One genomic isolate was completely sequenced and found to encode an intronless BHMT pseudogene (mBHMT-ps). mBHMT-ps was then used as a template for the generation of random probes that were used to screen a BAC library containing mouse 129 Sv/Ev genomic DNA. In order to discriminate between pseudogenes and the authentic BHMT gene, a secondary PCR-based screen was employed which used primers designed from the pseudogene sequence that would predictably amplify across introns. Using this strategy, we isolated six mouse genomic clones that tested positive for the presence of all seven introns characteristic of the human gene, and the BHMT gene of one clone was completely sequenced. Like the human BHMT gene, the mouse gene spans 21 kb and is encoded by eight exons interrupted by seven introns. The structure of the mouse BHMT gene is described herein as well as the 5′-flanking region of the gene adjacent to exon 1, which we demonstrate is capable of conferring basal promoter activity in Chinese Hamster Ovary cells.  相似文献   

18.
We previously reported that Otx2 is essential for photoreceptor cell fate determination; however, the functional role of Otx2 in postnatal retinal development is still unclear although it has been reported to be expressed in retinal bipolar cells and photoreceptors at postnatal stages. In this study, we first examined the roles of Otx2 in the terminal differentiation of photoreceptors by analyzing Otx2; Crx double-knockout mice. In Otx2+/-; Crx-/- retinas, photoreceptor degeneration and downregulation of photoreceptor-specific genes were much more prominent than in Crx-/- retinas, suggesting that Otx2 has a role in the terminal differentiation of the photoreceptors. Moreover, bipolar cells decreased in the Otx2+/-; Crx-/- retina, suggesting that Otx2 is also involved in retinal bipolar-cell development. To further investigate the role of Otx2 in bipolar-cell development, we generated a postnatal bipolar-cell-specific Otx2 conditional-knockout mouse line. Immunohistochemical analysis of this line showed that the expression of protein kinase C, a marker of mature bipolar cells, was significantly downregulated in the retina. Electroretinograms revealed that the electrophysiological function of retinal bipolar cells was impaired as a result of Otx2 ablation. These data suggest that Otx2 plays a functional role in the maturation of retinal photoreceptor and bipolar cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号