首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eastern Asian subtropical forests,leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes.This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions(e.g.,greater seasonality).The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest...  相似文献   

2.
Independence among leaf economics,leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments.However,it remains unclear whether the independence of the leaf traits revealed across species still holds within species,especially under stressed conditions.Here,a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species,Ceriops tagal,which grows in habitats with a similar sunny and hot environment but different soi...  相似文献   

3.
Differences in anatomy and morphology of the kiwifruit leaves and leaf petioles might play a considerable role in the sex-determination. Three months after bud break (June), the kiwifruit leaves of both male and female plants, grown on the vegetative and generative shoots showed different leaf area (128.6 ± 13.45 cm2 in male and 104.5 ± 4.02 cm2 in female plants) and shape. The most frequently leaf shape was determined as "folium cordatum" and "folium rotundato-cordatum". Higher values of total leaf thickness of the female leaves (190 ± 3.84 μm) in comparison to male leaves (174 ± 3.52 μm) were estimated, resulting in the thicker adaxial leaf epidermis and especially in thicker palisade parenchyma in female leaves (136 ± 2.76 μm in comparison to 104 ± 1.61 μm in male leaves). Typically bifacial leaves were observed in both male and female leaves. Anomocytic stomata in hypostomatic leaves were found. The reticulate venation appears to be the main type of leaf venation. Stalked stellate multicellular trichomes on the abaxial leaf side were frequently observed in the leaves of both sexes. No important differences between male and female plants were found in the structures of vascular system in leaves and leaf petioles. Thus leaf thickness and surface morphology of adaxial leaf epidermis can be considered as important structural parameters in the sex determination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Aims Our objectives were to investigate differences in nutrient resorption between different plant organs (leaf and branch), among plants with different life spans (one-year old, two-year old and senesced), and under different duration of nitrogen (N) deposition treatments in a Chinese fir (Cunninghamia lanceolata) plantation. Methods The long-term N deposition experiment was conducted in a 12-year-old fir plantation of subtropical China. N deposition treatment was initiated in January 2004 until now, up-going 14 years. N deposition were designed at 4 levels of 0, 60, 120, and 240 kg·hm–2·a–1, indicated as N0, N1, N2, and N3, respectively, with 3 replicates for each treatment. The solution of CO(NH2)2 was sprayed on the forest floor each month. In the study, we measured N and phosphorus (P) concentrations and analyzed the pattern of nutrient resorption of mature and senescing leaves and branches. The different responses of needles N and P resorption after 7- and 14-year N deposition treatments were also compared. Important findings After 14 years of N deposition, (1) during the senescing process, leaf and branch C, N, and P content gradually decreased with increasing treatment duration, with higher content in leaf than in branch. N content decreased in the order of one-year old green leaf > two-year old green leaf > senescent leaf > one-year old living branch > two-year old living branch > senescent branch, and N3 > N2 > N1 > N0, with C:N showing the opposite trend. Senescent organs had higher C:N, N:P, and C:P than mature living organs. N deposition increased N, N:P, and C:P of mature living organs (except for the two-year old green leaf), while decreased P and C:N. (2) N resorption efficiency (REN) and P resorption efficiency (REP) of leaves and branches decreased gradually with increasing life span. REP was typically higher in leaf and branch than REN. Leaf had lower REN (28.12%) than branch (30.00%), but higher REP (45.82%) than branch (30.42%). A highly significant linear correlation existed between N:P and REN:REP in leaves and branches. (3) REN decreased but REP increased with the treatment duration of N deposition. The longer experimental duration (14 years) reduced REN by 9.85%, 3.17%, 11.71% under N1, N2, and N3 treatments, respectively, and increased REP by 71.98%, 42.25%, 9.60%, respectively, than the shorter treatment duration (7 years). In summary, the responses of essential nutrients resorption efficiency for different plant organs and life span varied with the levels and duration of N deposition treatment. REN:REP in leaf and branch were mostly driven by N:P of leaf and branch. The results highlight that nutrients resorption is significantly influenced by long-term N deposition. © Chinese Journal of Plant Ecology.  相似文献   

5.
The red palm weevil(RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial(1st stage) or advanced(2nd stage)attack by RPW compared with healthy(unattacked) plants.The leaf metabolome significantly varied among treatments. At the 1st stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more changes during the 2nd than 1st stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1st rather than 2nd stage(e.g. phenylalanine; tryptophan; cellobiose;xylose; quinate; xylonite; idonate; and iso-threonate; cellobiotol and arbutine) are upstream events in the phenylpropanoid,terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However,further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules.  相似文献   

6.
Regulation of Leaf Senescence and Crop Genetic Improvement   总被引:2,自引:0,他引:2  
Leaf senescence can impact crop production by either changing photosynthesis duration,or by modifying the nutrient remobilization efficiency and harvest index.The doubling of the grain yield in major cereals in the last 50 years was primarily achieved through the extension of photosynthesis duration and the increase in crop biomass partitioning,two things that are intrinsically coupled with leaf senescence.In this review,we consider the functionality of a leaf as a function of leaf age,and divide a leaf’s life into three phases:the functionality increasing phase at the early growth stage,the full functionality phase,and the senescence and functionality decreasing phase.A genetic framework is proposed to describe gene actions at various checkpoints to regulate leaf development and senescence.Four categories of genes contribute to crop production:those which regulate (I) the speed and transition of early leaf growth,(II) photosynthesis rate,(III) the onset and (IV) the progression of leaf senescence.Current advances in isolating and characterizing senescence regulatory genes are discussed in the leaf aging and crop production context.We argue that the breeding of crops with leaf senescence ideotypes should be an essential part of further crop genetic improvement.  相似文献   

7.
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways.Here, we identified a rapid leaf senescence 3(rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 gene had a single-nucleotide substitution(G→A) at the splice site of the 10~(th)intron/11~(th) exon, resulting in the cleavage of the first nucleotide in 11 ~(th) exon and premature termination of RLS3 protein translation.Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions furtherrevealed that the rls3 mutant displayed rapid leaf senescence.Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.  相似文献   

8.
9.
Two new species of Polyalthiopsis(Annonaceae),P.nigra Y.H.Tan & Bin Yang from Guangxi and Yunnan Provinces and P.xui Y.H.Tan & Bin Yang from Yunnan Province,are described and illustrated.P.nigra is morphologically similar to P.chinensis in having narrowly elliptic-oblong,lemon to yellowish green petals,but differs by having obovoid monocarps,a higher number of leaf secondary veins,leaf blades usually widest above the middle,and a lower ratio of leaf blade length to width.P.xui is morphol...  相似文献   

10.
Aims: Variations and potential trade-offs of leaf hydraulic and photosynthetic traits are essential for assessing and predicting the effect of climate change on tree survival, growth and distribution. Our aims were to examine variations and interrelationships of leaf hydraulic and photosynthetic traits in response to changes in site conditions for Dahurian larch (Larix gmelinii)-a dominant tree species in Chinese boreal forests. Methods: This study was conducted at the Maoershan Forest Ecosystem Research Station. A transect of 27 year-old Dahurian larch plantation was established that consisted of five plots extending from the valley to the ridge of a slope. The predawn leaf water potential (ψpre), area- and mass-based leaf hydraulic conductance (Karea and Kmass, respectively), resistance to embolism capacity (P50), leaf mass per area (LMA), net photosynthetic rate (A), and leaf nitrogen content (N) were measured in August 2016. Important findings: The ψpre, Karea, Kmass, P50, A, LMA, and N all varied significantly among the plots (p < 0.05), indicating significant intra-specific variations in these traits in response to the changes in site conditions. The P50 was significantly (p < 0.05) correlated with ψpre, Karea or Kmass, suggesting that a trade-off between hydraulic efficiency and safety exist within the species to some degree. There were significant (p < 0.05) pairwise correlations between A, LMA, and N. Nevertheless, there was no significant (p < 0.05) correlation between the measured photosynthetic traits and hydraulic traits. We concluded that the intra-specific variations and multiple interrelationships of the leaf hydraulic and photosynthetic traits for the larch reflect the plasticity of its leaf traits and strategies of its survival and growth as a result of its acclimation to diverse site conditions.  相似文献   

11.
12.
Phyllosphere algae are common in tropical rainforests,forming visible biofilms or spots on plant leaf surfaces.However,knowledge of phyllosphere algal diversity and the environmental factors that drive that diversity is limited.The aim of this study is to identify the environmental factors that drive phyllosphere algal community composition and diversity in rainforests.For this purpose,we used single molecule real-time sequencing of full-length 18S rDNA to characterize the composition of phyllos...  相似文献   

13.
Yu  Hui-Wen  Lu  Zhi-Hao  Wang  Xia  Liu  Dan  He  Jia-Xian  Jiang  Xiao-Lin  Ke  Ling-Jun  Guo  Wen-Wu  Deng  Xiu-Xin  Xu  Qiang 《中国科学:生命科学英文版》2021,64(7):1165-1173
Delayed greening of young leaves is an unusual phenomenon of plants in nature. Citrus are mostly evergreen tree species. Here, a natural mutant of “Guanxi” pummelo(Citrus maxima), which shows yellow leaves at the young stage, was characterized to identify the genes underlying the trait of delayed leaf greening in plants. A segregating population with this mutant as the seed parent and a normal genotype as the pollen parent was generated. Two DNA pools respectively from the leaves of segregating seedlings with extreme phenotypes of normal leaf greening and delayed leaf greening were collected for sequencing. Bulked segregant analysis(BSA) and In Del marker analysis demonstrated that the delayed leaf greening trait is governed by a 0.3 Mb candidate region on chromosome 6. Gene expression analysis further identified a key candidate gene(Citrus Delayed Greening gene 1, CDG1) in the 0.3 Mb region, which showed significantly differential expression between the genotypes with delayed and normal leaf greening phenotypes. There was a 67 bp In Del region difference in the CDG1 promoter and the In Del region contains a TATA-box element. Confocal laser-scanning microscopy revealed that the CDG1-GFP fusion protein signals were co-localized with the chloroplast signals in the protoplasts. Overexpression of CDG1 in tobacco and Arabidopsis led to the phenotype of delayed leaf greening. These results suggest that the CDG1 gene is involved in controlling the delayed leaf greening phenotype with important functions in chloroplast development.  相似文献   

14.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was char-acterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then de-clined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dis-sipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than –21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon re-watering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   

15.
Bean plants (Phaseolus vulgaris L. var. Zargana Kavala) were grown under conditions of increasing Cu concentrations in the growth medium (0.5-160.5 μM). Generally, the Cu concentrations between 0.5-1.5 μM were deficient, 1.5-10.5 μM were optimal, and 10.5-160.5 μM were toxic to plant growth. The Cu toxicity was associated with marked increases in plant tissue Cu concentrations. Under the Cu-deficient and optimal growth conditions, Cu was located primarily in the leaves. Under Cu toxicity, it was primarily sequestered in the roots. With increasing Cu in the growth medium, there was a positive correlation between Cu concentrations in the roots, stems and leaves, Ca in the roots, and K and Mg in the leaves. In contrast, Ca concentrations in the leaves and stems showed a negative correlation. The chlorophyll (Chl) concentration increased with increasing leaf Cu concentration, however, the Chl a/b ratio decreased. Since with an increasing leaf Cu concentration the leaf area decreased more markedly than the leaf dry mass, the net photosynthetic rate (PN) per leaf area increased and per dry mass decreased. The increase in PN per leaf area was almost entirely accounted for by the increase in Chl concentration. The initial Chl fluorescence (F0) increased with increasing leaf Cu concentration. The ratio of variable to maximum fluorescence (Fv/Fm) under Cu toxicity decreased. The half-time for the rise from F0 to Fm (t1/2) remained relatively unchanged with increasing leaf Cu concentration. Therefore the Cu-stress caused a small decrease in the efficiency of photosystem 2 photochemistry, but its primary effect was on growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Foliar modifications induced by inhibition of polar transport of auxin   总被引:3,自引:0,他引:3  
The effects of auxin polar transport inhibitors,9-hydroxy-fluorene-9-carboxylic acid (HFCA);2,3,5-triiodobenzoic acid(TIBA) and trans-cinnamic acid (CA) on leaf pattern formation were investigated with shoots formed from cultured leaf explants of tobacco and cultured pedicel explants of Orychophragmus violaceus,and the seedlings of tobacco and Brassica chinensis,Although the effective concentration varies with the inhibitors used,all of the inhibitors induced the formation of trumpet-shaped and/or fused leaves.The frequency of trumpet-shaped leaf formation was related to the concentration of inhibitors in the medium.Histological observation of tobacco seedlings showed that there was only one main vascular bundle and several minor vascular bundles in normal leaves of the control,but there were several vascular bundles of more or less the same size in the trumpet-shaped leaves of treated ones.These results indicated that auxin polar transport played an important role on bilateral symmetry of leaf growth.  相似文献   

17.
The 5‘-region of the chitinase gene cabch29,derived from Brassica oleracea var.capitata,has been sequenced and analyzed for cis-acting elements important in controlling gene expression in transgenic tobacco plants.Different 5‘-deletion fragments were linked to reporter gene β-glucuronidase (GUS) as translational fusions,and the expression of these chimeric genes was analyzed in vegetative organs and tissues.Sequences up to-651 showed some basal GUS activity with nearly equal levels in wounded and intact tissues.The addition of further upstream sequences(-651 to-1284) enhanced expression level,and the expression driven by this fragment was inducible by a factor of two to three-fold by wounding.Histochemical analysis of different tissue from transgenic plants that contain cabch29 promoter-gus fusion gene demonstrated woundinducible and tissue-specific cabch29 promoter activity in plants containing the 1308 base pair fragment.The location of GUS activity appears to be cell-specific,being highest in vascular cells and epidermal cells of stem,leaf and roots.Meanwhile,the temporal and spatial expression of cabch29-GUS fusion gene has been investigated.Among the different vegetative organs,a high level of GUS activity was observed in stem and a moderate one in roots;whereas,wounding stress led to a high level of GUS in stem and moderate one in leaf.  相似文献   

18.
Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as phospholipids and galactolipids, are very low in abundance. These low-abundance lipids constitute key intermediates in lipid biosynthesis. In this study, we applied multiple lipidomic approaches, including high-sensitivity and high-specificity multiple reaction monitoring, to comprehensively quantify individual lipid species in crude palm oil. We also established a new liquid chromatography-coupled mass spectrometry method that allows direct quantification of low-abundance galactolipids in palm oil without the need for sample pretreatrnent. As crude palm oil contains large amounts of neutral lipids, our direct-detection method circumvents many of the challenges encountered with conventional lipid quantification methods. This approach allows direct measurement of lipids with no hassle during sample preparation and is more accurate and precise compared with other methods.  相似文献   

19.
20.
The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances,ecosystem,and species distribution.However,current studies on leaf phenology have mainly focused on temperate trees,while few studies including tropical trees.Little attention has been paid to globally extensive industrial plantations.Rubber plantations are important to both the local and global economies.In this study,we investigated the legacy effects of defoliation phenol...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号