首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After synthesis in the cytoplasm, H1 histones are imported into the nucleus through an energy-dependent process that can be mediated by an importin beta-importin 7 (Impbeta-Imp7) heterodimer. H1 histones contain two structurally different types of nuclear localization signals (NLS). The first type of NLS resides within the unstructured C-terminal domain and is rich in basic amino acids. In contrast, the highly conserved central domain of the H1 histone contains comparatively few basic amino acids but also represents a functional NLS. The competence for the nuclear import of this globular domain seems to be based on its secondary structure. Here, we show that the Impbeta-Imp7 heterodimer is the only receptor for H1 import. Furthermore, we identified the import receptors mediating the in vitro transport of different NLS of the H1 histone. Using the digitonin-permeabilized cell import assay we show that Impbeta is the most efficient import receptor for the globular domain of H1 histones, whereas the heterodimer of Impbeta and Imp7 is the functional receptor for the entire C-terminal domain. However, short fragments of the C-terminal domain are imported in vitro by at least four different importins, which resembles the import pathway of ribosomal proteins and core histones. In addition, we show that heterodimerization of Impbeta with Imp7 is absolutely necessary for their proper function as an import receptor for H1 histones. These findings point to a chaperone-like function of the heterodimeric complex in addition to its function as an import receptor. It appears that the Impbeta-Imp7 heterodimer is specialized for NLS consisting of extended basic domains.  相似文献   

2.
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.  相似文献   

3.
Nucleo-cytoplasmic transport comprises a large number of distinct pathways, many of which are defined by members of the importin beta superfamily of nuclear transport receptors. These transport receptors all directly interact with RanGTP to modulate the compartment-specific binding of their transport substrates. To identify new members of the importin beta family, we used affinity chromatography on immobilized RanGTP and isolated Ran-binding protein (RanBP) 16 from HeLa cell extracts. RanBP16 and its close human homologue, RanBP17, are distant members of the importin beta family. Like the other members of the transport receptor superfamily, RanBP16 interacts with the nuclear pore complex and is able to enter the nucleus independent of energy and additional nuclear transport receptors.  相似文献   

4.
Molecular basis for the recognition of snurportin 1 by importin beta   总被引:1,自引:0,他引:1  
The nuclear import of uridine-rich ribonucleoproteins is mediated by the transport adaptor snurportin 1 (SNP1). Similar to importin alpha, SNP1 uses an N-terminal importin beta binding (sIBB) domain to recruit the receptor importin beta and gain access to the nucleus. In this study, we demonstrate that the sIBB domain has a bipartite nature, which contains two distinct binding determinants for importin beta. The first determinant spans residues 25-65 and includes the previously identified importin alpha IBB (alphaIBB) region of homology. The second binding determinant encompasses residues 1-24 and resembles region 1011-1035 of the nucleoporin 153 (Nup153). The two binding determinants synergize within the sIBB domain to confer a low nanomolar binding affinity for importin beta (K(d) approximately 2 nm) in an interaction that, in vitro, is displaced by RanGTP. We propose that in vivo the synergy of Nup153 and nuclear RanGTP promotes translocation of uridine-rich ribonucleoproteins into the nucleus.  相似文献   

5.
The nuclear import of H1 linker histones is mediated by a heterodimer of transport receptors, known as importinbeta and importin7. Interestingly, both importins separately interact with H1, but only as a dimer they facilitate the translocation through the nuclear pore. We identified the H1 binding site of importin7, comprising two extended acidic loops near the C terminus of importin7. The analysis of the H1 import complex assembly by means of isothermal titration calorimetry revealed that the formation of a receptor heterodimer in vitro is an enthalpy-driven process, whereas subsequent binding of H1 to the heterodimer is entropy-driven. Furthermore, we show that the importinbeta binding domain of importin7 plays a key role in the activation of importin7 by importinbeta. This process is allosterically regulated by importinbeta and accounts for a specific tuning of the activity of the importinbeta.importin7 heterodimer. The results presented here provide new insights into cellular strategies to even energy balances in nuclear import and point toward a general regulation of importinbeta-related nuclear import processes.  相似文献   

6.
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.  相似文献   

7.
Many nuclear transport pathways are mediated by importin beta-related transport receptors. Here, we identify human importin (Imp) 4b as well as mouse Imp4a, Imp9a and Imp9b as novel family members. Imp4a mediates import of the ribosomal protein (rp) S3a, while Imp9a and Imp9b import rpS7, rpL18a and apparently numerous other substrates. Ribosomal proteins, histones and many other nuclear import substrates are very basic proteins that aggregate easily with cytoplasmic polyanions such as RNA. Imp9 effectively prevents such precipitation of, for example, rpS7 and rpL18a by covering their basic domains. The same applies to Imp4, Imp5, Imp7 and Impbeta and their respective basic import substrates. The Impbeta-Imp7 heterodimer appears specialized for the most basic proteins, such as rpL4, rpL6 and histone H1, and is necessary and sufficient to keep them soluble in a cytoplasmic environment prior to rRNA or DNA binding, respectively. Thus, just as heat shock proteins function as chaperones for exposed hydrophobic patches, importins act as chaperones for exposed basic domains, and we suggest that this represents a major and general cellular function of importins.  相似文献   

8.
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1], [2], [3], [4]. Import receptors such as importin β or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin α/β heterodimer, coupled directly to importin β release from the NPCs. If the importin β –RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5], [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin–substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin–substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin–substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin β independently of Ran and energy.  相似文献   

9.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

10.
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding.  相似文献   

11.
Produced by various types of solid tumors, parathyroid hormone-related protein (PTHrP) is the causative agent of humoral hypercalcemia of malignancy. The similarity of PTHrP's amino-terminus to that of parathyroid hormone enables it to share some of the latter's signalling properties, but its carboxy-terminus confers distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. PTHrP nuclear import occurs via a novel importin beta1-mediated pathway. The present study uses several different direct binding assays to map the interaction of PTHrP with importin beta using a series of alanine mutated PTHrP peptides and truncated human importin beta1 derivatives. Our results indicate that PTHrP amino acids 83-93 (KTPGKKKKGK) are absolutely essential for importin beta1 recognition with residues 71-82 (TNKVETYKEQPL) additionally required for high affinity binding; residues 380-643 of importin beta1 are required for the interaction. Binding of importin beta1 to PTHrP is reduced in the presence of the GTP-bound but not GDP-bound form of the guanine nucleotide binding protein Ran, consistent with the idea that RanGTP binding to importin beta is involved in the release of PTHrP into the nucleus following translocation across the nuclear envelope. This study represents the first detailed examination of a modular, non-arginine-rich importin beta1-recognized nuclear targeting signal.  相似文献   

12.
Forwood JK  Jans DA 《Biochemistry》2002,41(30):9333-9340
Telomere repeat factor 1 (TRF1) regulates the steady-state length of chromosomes, whereby its overexpression results in telomere shortening while dominant negative TRF1 mutations can lead to telomere elongation, which is linked to cell immortalization/transformation. Although present in the nucleus at mammalian chromosomal ends during interphase and mitosis, nothing is known of the mechanism by which TRF1 enters the nucleus or how its nuclear levels may be regulated and the relevance of this, in turn, to telomere length and cell immortalization. Here we examine the nuclear import mechanism of TRF by expressing and purifying a recombinant TRF1-GFP (green fluorescent protein) fusion protein that is functional in terms of being able to bind telomeric DNA specifically as shown using a novel, quantitative double-label gel mobility shift assay. We quantitate the ability of TRF1-GFP to accumulate in the nucleus using real time confocal laser scanning microscopy, showing that the nuclear import pathway of TRF1 is mediated by importin (Imp) beta1 and Ran. Imp beta is shown to bind directly to TRF1 with nanomolar affinity using native gel electrophoretic and fluorescence polarization (FP) approaches; FP experiments also demonstrate that Imp beta residues 1-380 are responsible for TRF1 binding. Intriguingly, when dimerized to Imp beta, Imp alpha was found to inhibit Imp beta-mediated nuclear accumulation, although not affecting Imp beta binding to TRF1. The study represents the first elucidation of the nuclear transport mechanism of TRF1; that its nuclear import is mediated directly by Imp beta but inhibited by Imp alpha may represent a novel regulatory mechanism, with potential relevance to oncogenesis.  相似文献   

13.
A heterodimer of importin alpha and importin beta accomplishes the nuclear import of proteins carrying classical nuclear localization signals (NLS). The interaction between the two import factors is mediated by the IBB domain of importin alpha and involves an extended recognition surface as shown by X-ray crystallography. Using a combination of biochemical and biophysical techniques we have investigated the formation of the importin beta:IBB domain complex in solution. Our data suggest that upon binding to the IBB domain, importin beta adopts a compact, proteolytically resistant conformation, while simultaneously the IBB domain folds into an alpha helix. We suggest a model to describe how these dual mutually induced conformational changes may orchestrate the nuclear import of NLS cargo in vivo.  相似文献   

14.
We previously reported that the nuclear import of substrates containing SV40 T antigen nuclear localization signal (NLS) was suppressed in a temperature-sensitive RCC1 mutant cell line, tsBN2, at nonpermissive temperature. Moreover, it was shown that import into wild type BHK21 cell-derived nuclei gradually decreased in heterokaryons between the tsBN2 and BHK21 cells, although the BHK21 nuclei retained wild type RCC1 and should contain RanGTP (Tachibana et al., 1994). In this study, it was found that in the heterokaryons cultured at non-permissive temperature, endogenous importin alpha was not detected immunocytochemically in the cytoplasm or BHK21 nuclei but only in the tsBN2 nuclei, suggesting that importin alpha cannot be exported from the RCC1-depleted nuclei. In fact, importin alpha microinjected into the nucleus of tsBN2 cells at non-permissive temperature remained in the nucleus. These results strongly support the hypothesis that the recycling of importin alpha from the nucleus requires nuclear RanGTP. Moreover, it was found that cytoplasmic injection of importin alpha restored the import of SV40 T-NLS substrates in the BHK21 nuclei but not the tsBN2 nuclei in the heterokaryons. This indicates that the decrease of importin alpha from the cytoplasm in the heterokaryons leads to a suppression of the efficiency of nuclear import of the T-NLS substrate and provides support for the view that nuclear RanGTP is essential for the nuclear entry of the substrates.  相似文献   

15.
16.
NTF2 mediates nuclear import of Ran.   总被引:17,自引:1,他引:16       下载免费PDF全文
Importin beta family transport receptors shuttle between the nucleus and the cytoplasm and mediate transport of macromolecules through nuclear pore complexes (NPCs). The interactions between these receptors and their cargoes are regulated by binding RanGTP; all receptors probably exit the nucleus complexed with RanGTP, and so should deplete RanGTP continuously from the nucleus. We describe here the development of an in vitro system to study how nuclear Ran is replenished. Nuclear import of Ran does not rely on simple diffusion as Ran's small size would permit, but instead is stimulated by soluble transport factors. This facilitated import is specific for cytoplasmic RanGDP and employs nuclear transport factor 2 (NTF2) as the actual carrier. NTF2 binds RanGDP initially to NPCs and probably also mediates translocation of the NTF2-RanGDP complex to the nuclear side of the NPCs. A direct NTF2-RanGDP interaction is crucial for this process, since point mutations that disturb the RanGDP-NTF2 interaction also interfere with Ran import. The subsequent nuclear accumulation of Ran also requires GTP, but not GTP hydrolysis. The release of Ran from NTF2 into the nucleus, and thus the directionality of Ran import, probably involves nucleotide exchange to generate RanGTP, for which NTF2 has no detectable affinity, followed by binding of the RanGTP to an importin beta family transport receptor.  相似文献   

17.
The nuclear import of assembled spliceosomal subunits, the uridine-rich small nuclear ribonucleoprotein particles (U snRNPs), is mediated by a nuclear import receptor adaptor couple of importinβ (Impβ) and snurportin1 (SPN1). In contrast to any other characterized active nuclear import, the Impβ/SPN1/U snRNP complex does not require RanGTP for the terminal release from the nuclear basket of the nuclear pore complex (NPC). The crystal structure of Impβ (127-876) in complex with the Impβ-binding (IBB) domain of SPN1 (1-65) at 2.8-Å resolution reveals that Impβ adopts an open conformation, which is unique for a functional Impβ/cargo complex, and rather surprisingly, it resembles the conformation of the Impβ/RanGTP complex. As binding of RanGTP to Impβ usually triggers the release of import complexes from the NPC, we propose that by already mimicking a conformation similar to Impβ/RanGTP the independent dissociation of Impβ/SPN1 from the nuclear basket is energetically aided.  相似文献   

18.
Nuclear import of U snRNPs requires importin beta.   总被引:2,自引:1,他引:1  
I Palacios  M Hetzer  S A Adam    I W Mattaj 《The EMBO journal》1997,16(22):6783-6792
Macromolecules that are imported into the nucleus can be divided into classes according to their nuclear import signals. The best characterized class consists of proteins which carry a basic nuclear localization signal (NLS), whose transport requires the importin alpha/beta heterodimer. U snRNP import depends on both the trimethylguanosine cap of the snRNA and a signal formed when the Sm core proteins bind the RNA. Here, factor requirements for U snRNP nuclear import are studied using an in vitro system. Depletion of importin alpha, the importin subunit that binds the NLS, is found to stimulate rather than inhibit U snRNP import. This stimulation is shown to be due to a common requirement for importin beta in both U snRNP and NLS protein import. Saturation of importin beta-mediated transport with the importin beta-binding domain of importin alpha blocks U snRNP import both in vitro and in vivo. Immunodepletion of importin beta inhibits both NLS-mediated and U snRNP import. While the former requires re-addition of both importin alpha and importin beta, re-addition of importin beta alone to immunodepleted extracts was sufficient to restore efficient U snRNP import. Thus importin beta is required for U snRNP import, and it functions in this process without the NLS-specific importin alpha.  相似文献   

19.
Transport of macromolecules between the nucleus and cytoplasm involves the recognition of intrinsic localization signals by either import or export receptors. The interaction of the receptors with their cargo is regulated by the small GTPase Ran in its GTP bound state. We have investigated the interaction of RanGTP with the import factor, importin beta, the export factor, CRM1, and the Ran binding protein, RanBP1, in solution. Importin beta specifically protected residues in the switch regions and basic patch region of Ran against proteolytic cleavage, whereas RanBP1 protected the C terminus. Moreover, the binding of importin beta induced a conformational change in the structure of Ran leading to an exposure of the C terminus and stimulated the binding of RanBP1. Mutating the basic patch (HRKK(142)) of Ran resulted in an increased binding of RanBP1 and weakened importin beta binding. In contrast to wild-type Ran, the mutant Ran could be released from importin beta independently of importin alpha. These data provide experimental support for a model in which the accessibility of the C terminus of Ran is influenced by an intramolecular interaction between the basic patch and the C-terminal acidic DEDDDL(216) motif. Binding of importin beta probably disrupts this interaction causing an exposure of the C-terminal extension, which is favorable for RanBP1 binding. Interestingly, basic patch mutations abolish CRM1 interaction, indicating that the determinants for RanGTP binding to the export factor, CRM1, is different from the import factor, importin beta.  相似文献   

20.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号