首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalyzed pyrolysis of cotton-seed cake was studied under different experimental conditions. Variables investigated were pyrolysis temperature, zeolite content and sweeping gas flow rate. Experiments were carried out isothermally. Liquids, gases and char were obtained as products of pyrolysis. The distributions of these products were determined for various contents (1, 5, 10, 20 wt.% of raw material) of zeolite at four different pyrolysis temperatures. The maximum liquid yield obtained was 30.84% at a pyrolysis temperature of 550 degrees C with a sweeping gas flow rate of 100 cm(3) min(-1) in the presence of clinoptilolite (20% based on raw material) as catalyst. The pyrolytic and catalytic liquid products were analysed in detail to determine the predominant chemical classes and the identities of the major compounds present.  相似文献   

2.
Fast pyrolysis of soybean cake: product yields and compositions   总被引:1,自引:0,他引:1  
This study was an investigation of the role of important parameters influencing pyrolysis yields from soybean cake. Experiments were carried out at temperatures ranging from 400 to 700 degrees C, for various nitrogen flow rates, heating rates and particle sizes. The maximum liquid yield was 42.83% at a pyrolysis temperature of 550 degrees C with a sweeping gas rate of 200 cm3 min(-1) and heating rate of 700 degrees C min(-1) for a soybean cake sample having 0.425 < D(p) < 0.85 mm particle size. The various characteristics of liquid product were identified. Thus, the aliphatic sub-fraction of the bio-oil was analysed by GC-MS and further structural analyses of bio-oil and aromatic and polar sub-fractions were conducted using FT-IR and 1H-NMR. The H/C ratios and the structural analysis of the fractions obtained from the biocrudes showed that the fractions were quite similar to currently utilised transport fuels.  相似文献   

3.
The effect of temperature and organic loading rate on the rate of methane production from acidic petrochemical wastewater without neutralization was investigated by continuously feeding an anaerobic upflow fixed-film reactor. The temperatures selected for the studies were 25, 37, 45 and 55 degrees C. Organic loading rate (OLR) for each temperature was varied from 3.6 to 21.7 kg COD m(-3) d(-1). Best performance with respect to COD and BOD reduction, total gas production and methane yield was obtained with the reactor operating at 37 degrees C. OLR could be increased to a maximum of 21.7 kg COD m(-3) d(-1) with 90-95% COD and BOD reduction and methane yield of 0.450 m3 kg(-1) COD d(-1) added. The reactor operating at 55 degrees C gave the highest methane yield of 0.666 m3 kg(-1) COD d(-1) at an OLR of 6 kg COD m(-3) d(-1). This decreased to 0.110 m3 kg(-1) COD d(-1) when the OLR was increased to 18.1 kg COD m(-3) d(-1). The reactor operating at 45 degrees C gave a maximum methane yield of 0.416 m3 kg(-1) COD d(-1) added at an OLR of 6 kg COD m(-3) d(-1). On further increasing the OLR to 9 kg COD m(-3) d(-1), COD reduction was 89%, however, methane yield decreased to 0.333 m3 kg(-1) COD d(-1) added. The highest methane yield of 0.333 m3 kg(-1) COD d(-1) added at an OLR of 6 kg COD m(-3) d(-1) was obtained with reactors operating at 25 degrees C. These studies indicate potential rates of methane production from acidic petrochemical wastewater under different temperatures. This provides a guideline for various kinetic analyses and economic evaluation of the potential feasibility of fermenting acidic wastewater to methane.  相似文献   

4.
Pyrolysis experiments on sunflower (Helianthus annus L.)-pressed bagasse were performed in a fixed-bed tubular reactor. The effects of nitrogen flow rate and final pyrolysis temperature on the pyrolysis product yields and chemical compositions were investigated. The maximum bio-oil yield of 52.10 wt.% was obtained in a nitrogen atmosphere with flow rate of 50 ml min(-1) and at a pyrolysis temperature of 550 degrees C with a heating rate of 5 degrees C s(-1). The chemical characterization results showed that the oil obtained from sunflower-pressed bagasse may be a potentially valuable source as fuel or chemical feedstocks.  相似文献   

5.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

6.
Olive bagasse (Olea europea L.) was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 350 and 550 degrees C with heating rates of 10 and 50 degrees C min(-1). The particle size and sweep gas flow rate varied in the ranges 0.224-1.8mm and 50-200 cm3 min(-1), respectively. The bio-oil obtained at 500 degrees C was analysed and at this temperature the liquid product yield was the maximum. The various characteristics of bio-oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of the bio-oil with heating value of 31.8 MJ kg(-1) was established as CH(1.65)O(0.25)N(0.03). The chemical characterization showed that the bio-oil obtained from olive bagasse may be potentially valuable as a fuel and chemical feedstock.  相似文献   

7.
The concepts of feed pretreatment, phase separation, and whole-cell immobilization technology have been incorporated in this investigation for the development of rational and cost-effective two- and three-stage methane recovery systems from water hyacinth (WH)Analyses of laboratory data reveal that a three-stage system could be designed with an alkali pretreatment stage [3.6% Na(2)CO(3) + 2.5% Ca(OH)(2) W/W, 24 h HRT] followed by an open acid reactor (2.1 days HRT) and closed immobilized methane reactor (12 h HRT), providing steady-state COD conversion of 62-65%, TVA conversion of 91-95%, and gas productivity of 4.08-5.36 L/L reactor volume/day with 82% methane. A gas yield of 50 L/kg WH/day (dry wt basis) at 35-37 degrees C is possible with this system. Insulation bricks, with particle size distribution of 500-3000 mum, were used as support material in the reactors at organic loading rate of 20 kg COD/m(3) day. The reactors matured in 15-18 weeksSubstantial reduction in retention time for the conversion of volatile acids in immobilized methane reactors prompted further research on the combined immobilized reactor to make possible an additional reduction in the cost of a WH-based biogas system. Evaluation of laboratory data reveals that a two-stage system could be designed with an open alkali pretreatment stage and a combined immobilized reactor (12 h HRT), providing steady-state COD conversion of 53% and gas productivity of 3.1 L/L reactor volume/day with 86% methane. A gas yield of 44 L/kg WH/day (dry wt basis) at 35-37 degrees C could be obtained from this system. Insulation bricks, with 500-1000 mum particle size distribution, was used as support material at an organic loading rate of 15 kg COD/m(3) day. Notwithstanding the fact that the technology in this study has been developed with water hyacinth as substrate, the implicit principles could be extended to any other organic substrate.  相似文献   

8.
In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600 °C), heating rate (10-50 °C/min) and nitrogen gas flow rate (50-200 cm3/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550 °C, sweeping gas flow rate of 100 cm3/min and heating rate of 50 °C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, 1H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.  相似文献   

9.
Unique gelation behavior of cellulose in NaOH/urea aqueous solution   总被引:11,自引:0,他引:11  
Cai J  Zhang L 《Biomacromolecules》2006,7(1):183-189
A transparent cellulose solution was prepared by mixing 7 wt % NaOH with 12 wt % urea aqueous solution which was precooled to below -10 degrees C and which was able to rapidly dissolve cellulose at ambient temperature. The rheological properties and behavior of the gel-formed cellulose solution were investigated by using dynamic viscoelastic measurement. The effects of temperature, time, cellulose molecular weight, and concentrations on both the shear storage modulus (G') and the loss modulus (G") were analyzed. The cellulose solution having a viscosity-average molecular weight (M(eta)) of 11.4 x 10(4) had its sol-gel transition temperature decreased from 60.3 to 30.5 degrees C with an increase of its concentration from 3 to 5 wt %. The gelation temperature of a 4 wt % cellulose solution dropped from 59.4 to 30.5 degrees C as the M(eta) value was increased from 4.5 x 10(4) to 11.4 x 10(4). Interestingly, at either higher temperature (above 30 degrees C), or lower temperature (below -3 degrees C), or for longer gelation time, gels could form in the cellulose solutions. However, the cellulose solution remains a liquid state for a long time at the temperature range from 0 to 5 degrees C. For the first time, we revealed an irreversible gelation in the cellulose solution system. The gel having been formed did not dissolve even when cooled to the temperature of -10 degrees C, at which it was dissolved previously. Therefore, this indicates that either heating or cooling treatment could not break such stable gels. A high apparent activation energy (E(a)) of the cellulose solution below 0 degrees C was obtained and was used to explain the gel formation under the cooling process.  相似文献   

10.
Pyrolytic behavior of waste corn cob   总被引:6,自引:0,他引:6  
The powder of the agricultural waste corn cob was pyrolyzed in a tube-typed stainless steel reactor of 200 ml volume under N2 atmosphere. The compositions of the gases and liquid obtained at different pyrolytic temperatures below 600 degrees C at the heating rate of 30 K/min were analyzed. With the increment of the pyrolytic temperature, the yields of the solid and the liquid products were decreased, but the yield of gas products was increased. The liquid products were approximately 34-40.96% (wt%), the gas products were 27-40.96% (wt%) and the solid products 23.6-31.6% (wt%). There were less changes for the yields of these products above 600 degrees C. The gas products were analyzed by gas chromatography (GC) as CO2, CO, H2, CH4, C2H4, C3H6, C3H8, etc. When the temperature was 350-400 degrees C, the gases had CO2 and CO 80-95% (v/v). When the temperature increased continuously, yields of H2, CH4, C2H4, C3H6 and C3H8 gradually increased. The liquid products were identified by GC-MS as phenols, 2-furanmethanol, 2-cyclopentanedione, etc. The Fourier transform infra-red spectrophotometer (FT-IR) analysis of the liquid product showed a strong -OH group absorption peak. Differential thermogravimetric analysis (DTG) showed that thermal decomposition process involves two steps. The heating rate affects not only the activation energy of the decomposition reaction, but also the path of the reaction. With the increment of the heating rate, the maximum rate temperature of the decomposition reaction was shifted to a higher temperature, and the order and activation energy of the total decomposition reaction were decreasing.  相似文献   

11.
A number of Aspergillus and Penicillium species were tested for production of ochratoxin A (OA) in several media. After 8 days of static incubations of submerged cultures at 28 degrees C, toxin yields of 25 and 30 micrograms/ml were obtained with Aspergillus alliaceus NRRL 4181 in Ferreirás and 2% yeast extract-4% sucrose media, respectively. However, the largest production observed in the preliminary screening was 54 micrograms/ml; this highest level was produced by A. sulphureus NRRL 4077 in a modified Czapek solution. The medium contained the basal salts and sucrose of Czapek plus urea (3%) and corn steep liquor (0.5% solids). A time study of toxin production demonstrated maximum yield of 350 micrograms/ml by the A. sulphureus isolate in the modified Czapek medium after 11 days of static incubation at 28 degrees C. The optimal production conditions were employed in additional tests designed to measure the efficiency of 14C incorporation from sodium [1-14C]-acetate into OA. Samples (20 microCi) of sodium acetate were added to separate culture flasks at 24-h intervals during the initial 9 days of the fermentation. Addition of [14C]acetate on day 4 of incubation provided the maximum yield of labeled OA. The highest specific activity of labeled toxin obtained was 0.07 microCi/mg of OA and the maximum incorporation rate of labeled acetate was 5.3%.  相似文献   

12.
The kinetics of the production of fusaproliferin by Fusarium subglutinans ITEM 2404 in maize and rice cultures was investigated at various incubation temperatures. The growth rate of F. subglutinans was highest at 20 degrees C and 25 degrees C in maize cultures and at 15 degrees C in rice cultures. Although the growth rate was higher in rice than in maize, the maximal production of fusaproliferin was obtained in maize cultures, with a maximum yield (4309 microg g(-1)) at 20 degrees C for 6 weeks. In rice cultures the optimal incubation regimen was at 15 degrees C for 6 weeks, with a fusaproliferin level of 1557 microg g(-1). The production of fusaproliferin at 25 degrees C and 30 degrees C in both substrates was very low, with maximal yield at 25 degrees C of 979 microg g(-1) after 2 weeks and 143 microg g(-1) after 3 weeks in maize and rice cultures, respectively.  相似文献   

13.
Lactase (beta-d-galactosidase) was produced by Candida pseudotropicalis grown in deproteinized whey. Maximum enzyme production in 2% whey was obtained by supplementation with 0.15% yeast extract, 0.1% (NH(4))(2)SO(4), and 0.05% KH(2)PO(4) (wt/vol). Highest enzyme values (4.35 U/mg of cells and 68 U/ml) were obtained with 10 to 12% whey, while enzyme yield was maximal in 2% whey (0.87 U/mg of whey). Optimal initial pH for cultivation was 3.5. The best conditions for extraction included 2% (wt/vol) chloroform, 10 h of treatment, pH 6.6 and higher, and 30 to 37 degrees C. Optimum pH and temperature for enzyme activity were 6.2 and 47 degrees C. The enzyme had a K(m) for O-nitrophenyl-beta-d-galactopyranoside of 3.06 x 10 M and the initial V(max) was estimated as 6.63 x 10 M per min. It hydrolized 50 and 100% of the lactose in whey and milk within 4 and 5 h, respectively, at 37 degrees C. The lyophilized enzyme retained 95% of activity for 3 months when stored at -20 degrees C.  相似文献   

14.
Physiological responses of Dunaliella salina and Dunaliella viridis, isolated from solar saltworks on the Yucatan Peninsula, were studied. Optimal growth temperature for D. salina was 22 degrees C (3.06 x 10(6) cells mL(-1)) and 26 degrees C for D. viridis (4.04 x 10(6)cells mL(-1)). Total carotenoid content in D. salina increased with temperature to a maximum of 35.14 pg cell(-1) at 38 degrees C. Dunaliella salina alpha-carotene and beta-carotene content was 0.083+/-0.003 and 0.598+/-0.020 mg 100g dry wt(-1) respectively, whereas lower values were found in D. viridis cultured under same experimental conditions (0.018+/-0.002 and 0.136+/-0.012 mg 100g dry wt(-1) respectively). The highest specific growth rate in D. salina was obtained at 10% NaCl (0.28 d(-1)), while its cell volume increased from 524 to 2066.93 microm(3) when cultured from 10% to 35% NaCl. Maximum photosynthetic rates were attained when increasing from optimal growing temperature to 30 degrees C for D. viridis (108 n mol O(2)microg chl alpha h(-1)) and D. salina (139 n mol O(2)microg chl alpha h(-1)). Photosynthetic responses to temperature variations indicated physiological adjustments in both species, with higher acclimation in D. salina. Evaluation of physiological attributes of these species will be used for to carry out mass cultivation.  相似文献   

15.
The effect of temperature variation on biomethanation at high altitude   总被引:1,自引:0,他引:1  
The aim of the current study was to examine effects of daily temperature variations on the performance of anaerobic digestion. Forced square-wave temperature variations (between 11 and 25, 15 and 28, and 19 and 32 degrees C) were imposed on a bench-scale digester using a mixture of llama-cow-sheep manure in a semi-continuous process. The volumetric biogas production rate, methane yield, and the volatile solid reductions were compared with the results obtained from anaerobic digestion (AD) at constant temperatures. The forced cyclic variations of temperature caused large cyclic variations in the rate of gas production and the methane content. As much as 94-97% of the daily biogas was obtained in the 12h half-cycle at high temperature. The values for volumetric biogas production rate and methane yield increased at higher temperatures. The average volumetric biogas production rate for cyclic operation between 11 and 25 degrees C was 0.22Ld(-1)L(-1) with a yield of 0.07m3CH4kg(-1) VS added (VSadd), whereas for operation between 15 and 29 degrees C the volumetric biogas production rate increased by 25% (to 0.27Ld(-1)L(-1) with a yield of 0.08m3CH4kg(-1) VSadd). In the highest temperature region a further increase of 7% in biogas production was found and the methane yield was 0.089m(3)CH(4)kg(-1) VSadd. The employed digester showed an immediate response when the temperature was elevated, which indicates a well-maintained metabolic capacity of the methanogenic bacteria during the period of low temperature. Overall, periodic temperature variations appear to give less decrease in process performance than a priori anticipated.  相似文献   

16.
Differential scanning calorimetry and x-ray diffraction have been used to investigate hydrated multibilayers of N-lignoceryl sphingomyelin (C24:0-SM) in the hydration range 0-75 wt % H2O. Anhydrous C24:0-SM exhibits a single endothermic transition at 81.3 degrees C (delta H = 3.6 kcal/mol). At low hydration (12.1 wt % H2O), three different endothermic transitions are observed: low-temperature transition (T1) at 39.4 degrees C (transition enthalpy (delta H1) = 2.8 kcal/mol), intermediate-temperature transition (T2) at 45.5 degrees C, and high-temperature transition (T3) at 51.3 degrees C (combined transition enthalpy (delta H2 + 3) = 5.03 kcal/mol). On increasing hydration, all three transition temperatures of C24:0-SM decrease slightly to reach limiting values of 36.7 degrees C (T1), 44.4 degrees C (T2), and 48.4 degrees C (T3) at approximately 20 wt % H2O. At 22 degrees C (below T1), x-ray diffraction of C24:0-SM at different hydration levels shows two wide-angle reflections, a sharp one at 1/4.2 A-1 and a more diffuse one at 1/4.0 A-1 together with lamellar reflections corresponding to bilayer periodicities increasing from d = 65.4 A to a limiting value of 71.1 A. Electron density profiles show a constant bilayer thickness dp-p approximately 50 A. In contrast, at 40 degrees C (between T1 and T2) a single sharp wide-angle reflection at approximately 1/4.2 A-1 is observed. The lamellar reflections correspond to a larger bilayer periodicity (increasing from d = 69.3-80.2 A) and there is some increase in dp-p (52-56 A) with hydration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The production of fermentable sugars from olive tree biomass was studied by dilute acid pretreatment and further saccharification of the pretreated solid residues. Pretreatment was performed at 0.2%, 0.6%, 1.0% and 1.4% (w/w) sulphuric acid concentrations while temperature was in the range 170-210 degrees C. Attention is paid to sugar recovery both in the liquid fraction issued from pretreatment (prehydrolysate) and that in the water-insoluble solid (WIS). As a maximum, 83% of hemicellulosic sugars in the raw material were recovered in the prehydrolysate obtained at 170 degrees C, 1% sulphuric acid concentration, but the enzyme accessibility of the corresponding pretreated solid was not very high. In turn, the maximum enzymatic hydrolysis yield (76.5%) was attained from a pretreated solid (at 210 degrees C, 1.4% acid concentration) in which cellulose solubilization was detected; moreover, sugar recovery in the prehydrolysate was the poorest one among all the experiments performed. To take account of fermentable sugars generated by pretreatment and the glucose released by enzymatic hydrolysis, an overall sugar yield was calculated. The maximum value (36.3 g sugar/100 g raw material) was obtained when pretreating olive tree biomass at 180 degrees C and 1% sulphuric acid concentration, representing 75% of all sugars in the raw material. Dilute acid pretreatment improves results compared to water pretreatment.  相似文献   

18.
This paper describes the enzymatic hydrolysis of solid residue of olive mill (OMRS) in a batch reactor with the Trichoderma reesei enzyme. Before enzymatic saccharification, crude lignocellulosic material is submitted to alkaline pre-treatment with NaOH. Optimum conditions of the pre-treatment (temperature of T=100 degrees C and OMRS-NaOH concentration ratio of about R=20) were determined. The optimum enzymatic conditions determined were as follows: pH of about 5, temperature of T=50 degrees C and enzyme to mass substrate mass ratio E/S=0.1g enzyme (g OMRS)(-1). The maximum saccharification yield obtained at optimum experimental conditions was about 50%. The experimental results agree with Lineweaver Burk's formula for low substrate concentrations. At substrate concentrations greater than 40gdm(-3), inhibitory effects were encountered. The kinetic constants obtained for the batch reactor were K(m)=0.1gdm(-3)min(-1) and V(m)=800gdm(-3).  相似文献   

19.
Hydrated multibilayers of 1-palmitoyl-2-monobromopalmitoyl-sn-glycero-3-phosphorylcholine (BrDPPC), where the 2-chain is brominated at either the C-9 or C-10 position, have been studied by low and wide angle X-ray diffraction methods. Oriented and unoriented samples were investigated. The long spacing was observed over the temperature interval -15 degrees C to 80 degrees C. A monotonic increase from approx. 50 A to approx. 62 A (28 wt. % H2O) occurred with decreasing temperature. The BrDPPC showed no evidence of a sharp gel-to-liquid crystal phase transition. Wide angle scattering showed a diffuse peak corresponding to (4.5 A)-1. Differential scanning calorimetry measurements for hydrated liposomes (50 wt. % H2O) also showed no evidence for a phase transition (-40 less than or equal to T less than or equal to 60 degrees C). These results suggest a low temperature amorphous (glass) state for the acyl side chains of BrDPPC. Monolayer film properties of monobrominated stearic acid also reflect a chain disordering effect occurring upon midchain substitution.  相似文献   

20.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号