共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein which specifically binds [3H]benzo[a]pyrene and other polycyclic aromatic hydrocarbons has been purified over 6000-fold from rat hepatic cytosol by using ion-exchange, gel permeation, and hydrophobic interaction chromatography. The binding protein differs from the 9S binding protein characterized in other laboratories. A Stokes radius of 2.75 nm was determined by gel filtration on Sephadex G-100. A sedimentation coefficient of 3.3 S was determined by using sucrose gradient analysis. The ability of this protein to bind total rat liver DNA as well as subclones containing portions of the rat cytochrome P-450c gene was investigated. Under high stringency conditions, this binding protein was found to interact in a specific and saturable manner with several subclones of the rat cytochrome P-450c gene containing 5'-upstream sequences, as well as portions of intron 1. Binding was not observed to the coding portions of the gene. These data implicate the "4S" binding protein in the transregulation of rat cytochrome P-450c expression. 相似文献
2.
The 4 S polycyclic aromatic hydrocarbon (PAH)-binding protein (PBP) is a soluble protein that binds PAHs with high affinity in mouse, rat, and rabbit. Until now, this protein had not been detected in human placenta or human cells in culture by cytosol labeling and gradient centrifugation assay. Thanks to a preliminary fractionation of cytosol by sedimentation on sucrose gradient or/and gel permeation chromatography, we found that PBP was present in liver, MCF-7 cell line, and hepatocytes of human. To accurately quantitate PBP binding and determine specific binding parameters, a reduction in the amount of charcoal used to adsorb nonspecifically bound benzo[a]pyrene was required. By saturation analysis, the concentration of specific binding sites for [3H]BP in PBP fraction from human liver was 4.6 pmol/mg of protein compared with 14.7 +/- 1.4 pmol/mg in the same fraction from DBA/2J mouse liver. Kinetic studies analyzed by Scatchard and Woolf plots indicate that human liver and MCF-7 cells contain a low-affinity PBP form: the Kd derived from Woolf plot analysis were 14.2 +/- 1.4 and 26.2 +/- 1.8 nM, respectively. DBA/2J mouse possesses a higher-affinity PBP form, the same analysis indicating a Kd of 6.1 +/- 0.3 nM. These data demonstrate that, by comparison to the mouse liver, a lower-affinity form of PBP is present in reduced concentration in human liver, explaining the impossibility of detecting this protein by sedimentation of human cytosol in sucrose gradient. 相似文献
3.
Regulation of cytochrome P-450c by glucocorticoids and polycyclic aromatic hydrocarbons in cultured fetal rat hepatocytes 总被引:1,自引:0,他引:1
J M Mathis R A Prough R N Hines E Bresnick E R Simpson 《Archives of biochemistry and biophysics》1986,246(1):439-448
The actions of polycyclic aromatic hydrocarbons and glucocorticoids to regulate the synthesis of cytochrome P-450c (the major isozyme induced by polycyclic aromatic hydrocarbons) were investigated in fetal rat hepatocytes maintained in primary monolayer culture. Treatment of hepatocytes in culture with 1,2-benzanthracene resulted in a 50-fold increase in 7-ethoxycoumarin O-deethylase activity. The level of P-450c increased in the cells in a time-dependent fashion as determined by immunoelectrophoretic analysis. The inductive effect of BA was potentiated approximately 1.6- to 2.3-fold when 1 microM dexamethasone was included in the culture medium. However, dexamethasone alone had little or no effect on the induction of P-450c. The rate of synthesis of P-450c was examined by immunoisolation of the specific isozyme from total cellular proteins radiolabeled with [35S]methionine and from the protein products formed during in vitro translation of the isolated mRNA. In addition, the amount of mRNA specific for cytochrome P-450c was determined by Northern blot analysis of RNA extracted from cultured cells. The changes in the rates of synthesis and mRNA levels were found to parallel the changes in enzyme activity. The concentration of dexamethasone required to cause a half-maximal increase in P-450c content in the presence of 1,2-benzanthracene was between 10(-8) and 10(-7) M. It is concluded that glucocorticoids act synergistically with polycyclic aromatic hydrocarbons to increase the levels of P-450c expressed in the fetal rat liver, and that this action is likely mediated by the classical type II glucocorticoid receptor. 相似文献
4.
Z Sípal P Anzenbacher Z Putz J Chlumsky O Krivanová 《Acta biologica et medica Germanica》1979,38(2-3):483-494
Hydrocarbons of different structures interact with microsomal and solubilized cytochrome P-450 from liver of phenobarbital-pretreated rats forming a high spin enzyme-substrate type complex. The affinity of cytochrome P-450 for hydrocarbons increases with increasing lipophilicity independently of the chemical structure. The binding capacity of microsomal P-450 for aliphatic hydrocarbons is generally higher than for aromates. Mutual influence in binding of two different hydrocarbons by microsomal P-450 is stronger among aromatic than among aliphatic hydrocarbons; in both cases it appears to be effected rather by specific interaction of both substances with the binding site than by a nonspecific influence on the microsomal membrane. Only one fraction of low spin form of solubilized cytochrome P-450 from rat liver interacts with hydrocarbons. The binding capacity for aromatic and aliphatic substances corresponds to that found in microsomes. The affinity for the most lipiphilic substrate, perhydrophenanthrene, is equal in microsomal and solubilized preparation; with decreasing lipophilicity the affinity of solubilized P-450 decreases faster than in microsomes. The LM2 fraction of cytochrome P-450 from phenobarbital-pretreated rabbits interacts only with aliphatic hydrocarbons with wide variation of the binding capacity. The affinity is generally one order of magnitude lower than in microsomes. Active fractions of solubilized P-450 from both species are rapidly converted to P-420 by dithionite. The extent of this conversion is strongly reduced by saturation with substrate. 相似文献
5.
P L Iversen W J Heiger E Bresnick R N Hines 《Archives of biochemistry and biophysics》1987,256(1):397-401
Aryl hydrocarbon hydroxylase activity is most closely associated with cytochrome P-450c in the rat and cytochrome P1-450 in the mouse. The sequence for the orthologous human gene coding for this enzymatic activity has been determined from several sources: cytochrome P-450c isolated from human embryonic DNA [K. Kawajiri, J. Watanabe, O. Gotoh, Y. Tagashiri, K. Sogawa, and Y. Fujii-Kuriyama (1986) Eur. J. Biochem. 139, 219-225], human lymphocytes in our own laboratory, and cytochrome P1-450 isolated from the established human breast carcinoma cell line, MCF-7 [A.K. Jaiswal, F. J. Gonzalez, and D. W. Nebert (1985) Nucleic Acids Res. 13, 4503-4520]. The data from our laboratory agree well with the sequence derived from human embryonic DNA, but differs significantly from that reported for the gene isolated from MCF-7 cells. Among these differences are a 320-bp insert and a 650-bp deletion in intron 1 relative to the sequence derived from the established cell line. We observe two mRNA species that hybridize to cytochrome P-450c probes, one expected at 2.7 kb and an additional 2.0-kb species. Finally, we note additional hybridization bands in 11% of the population examined by Southern blot analysis, representing either a second rare allele or, more likely, a duplication of at least a portion of the cytochrome P-450c gene. 相似文献
6.
The effects of modified cyclodextrins (CDs) hydroxypropyl-beta-CD and methyl-beta-CD were studied in vitro on cDNA-expressed human cytochrome P-450 (CYP) activities (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). The modified CDs inhibited the activities of CYP2C19 and CYP3A4 while enhancing CYP2C9 activity by 140 to 176% relative to the control values at lower concentrations. In addition, methyl-beta-CD inhibited CYP1A2 and CYP2D6 at higher concentrations. 相似文献
7.
8.
Spectrophotometric, affinity chromatography and cross-linking experiments provided evidence that cytochrome P-450scc from bovine adrenocortical mitochondria forms a tight complex with cytochrome b5 from rabbit liver microsomes. In the reconstituted system cholesterol side chain activity of cytochrome P-450scc was enhanced by the addition of cytochrome b5. 相似文献
9.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed. 相似文献
10.
John Y.L. Chiang 《Archives of biochemistry and biophysics》1981,211(2):662-673
The interactions between purified microsomal cytochrome P-450 and cytochrome b5 has been demonstrated by aqueous two-phase partition technique. Major forms of cytochrome P-450 induced by phenobarbital (P-450LM2) and β-naphthoflavone (P-450LM4) are almost exclusively distributed in the dextran-rich bottom phase (partition coefficient, K = 0.06), whereas NADPH-cytochrome P-450 reductase and cytochrome b5 are mainly distributed in the polyethylene glycol-rich top phase (K = 3.5 and 2.5, respectively), when these enzymes were partitioned separately in the dextran-polyethylene glycol two-phase system. The mixing of P-450LM with cytochrome b5 changes the partition coefficients of both P-450LM and cytochrome b5 indicating that molecular interaction between P-450LM and cytochrome b5 occurred. Complex formation was also confirmed by optical absorbance difference spectral titration, and the stimulation of the P-450LM-dependent 7-ethoxycoumarin and p-nitrophenetole O-deethylase activities by equal molar quantity of detergent-solubilized cytochrome b5, but not trypsin-solubilized enzyme, in the reconstituted system. Cytochrome b5 decreases the Km's of both substrates for P-450LM2-dependent O-deethylations and increases the V's of both reactions by two- to three-fold. This stimulatory effect requires the presence of phospholipid in the reconstituted enzyme system. These results suggest that cytochrome b5 plays a role in some reconstituted drug oxidation enzyme systems and that molecular interactions among cytochrome P-450, reductase, and cytochrome b5 are catalytically competent in the electron transport reactions. 相似文献
11.
The chromatin structure of cytochrome P-450c and P-450d genes, which in the liver are highly inducible by 3-methylcholanthrene, was studied in normal and carcinogen-treated rats by using a cDNA probe specific for P-450c and a genomic probe that recognizes both genes. Digestion with micrococcal nuclease revealed that the active genes are not present in the typical 200 base pair nucleosomal structure. Gene induction is associated with a rearrangement of the nuclear organization of the genes. By use of indirect end-label hybridization, three DNase I hypersensitive sites were mapped, one in the 5'-terminal region and two in the 3' region of the P-450c gene. Gene induction, by treatment with 3-methylcholanthrene, changes the location of the DNase I site present in the 5' region without affecting the sites present in the 3' region. Rat thymus chromatin does not contain these DNase I hypersensitive sites, suggesting that, in the liver, the chromatin structure is altered so as to allow tissue-specific expression of the P-450c gene. The chromatin structure of the highly inducible P-450c gene is compared to that of the P-450m gene, which is induced to a significantly smaller extent and is constitutively expressed. 相似文献
12.
K Kawajiri J Watanabe O Gotoh Y Tagashira K Sogawa Y Fujii-Kuriyama 《European journal of biochemistry》1986,159(2):219-225
13.
14.
P L Iversen R N Hines E Bresnick 《BioEssays : news and reviews in molecular, cellular and developmental biology》1986,4(1):15-19
The heme-containing cytochromes P-450 are a ubiquitous family of monooxygenase isozymes responsible for the oxidative metabolism of a wide variety of endogenous as well as exogenous compounds. Many of the compounds metabolized by this enzyme system are effectively detoxified and converted to derivatives more easily eliminated from the organism. However, some compounds can be activated to reactive species capable of eliciting a cascade of toxic lesions, including cancer. Since its discovery nearly 30 years ago, the cytochrome P-450 enzyme system has received a great deal of attention, particularly in the areas of their mechanisms of metabolism, range of substrate specificity, the purification and characterization of the multiple isozymes and, more recently, the regulation of expression of specific forms. This review will discuss current notions concerning the expression of at least one cytochrome P-450 isozyme and future directions that should lead to a more complete understanding of cytochrome P-450 gene expression in general, particularly as it impacts upon biochemical pharmacology. 相似文献
15.
J F Crivello 《Archives of biochemistry and biophysics》1986,248(2):551-561
The antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), nordihydroguiaretic acid (NDGA), benzyl sulfoxide (BS), ferulic acid (FA), caffeic acid (CA), dimethyl sulfoxide (Me2SO), protocatechuic acid (PCA), and P-450 inhibitor metyrapone all acted to slow the previously noted loss of vitamin D3 1 alpha-and 24-hydroxylase activities in cultured bovine proximal tubule cells. The slowing of the loss of hydroxylase activities by antioxidants was increased by culturing cells in 5% O2 vs 19% O2. These same antioxidants also directly inhibited 1 alpha- and 24-hydroxylase activities. For a single antioxidant, or metyrapone, Ki's for inhibition of both hydroxylases were equal, ED50's for stabilization of both hydroxylase activities were equal, and Ki's and ED50's were not significantly different. These antioxidants prevented tert-butylhydroperoxide (tert-BOOH)-mediated proximal tubule cell death at concentrations, i.e., 0.1 mM, which were effective in stabilizing hydroxylase activities. When added together, the antioxidants H2SeO3, uric acid, and trolox c gave slight stabilization of hydroxylase activities without inhibiting hydroxylase activities. Singly, these antioxidants did not stabilize or directly inhibit hydroxylase activities. This antioxidant combination augmented BHA- or BHT-mediated stabilization of both hydroxylase activities independent of any effects on inhibition. But the most potent antioxidants which acted to stabilize hydroxylase activities in culture also directly acted to inhibit hydroxylase activities. Antioxidant effects were additive for both inhibition and stabilization of hydroxylase activities. Stabilization of hydroxylase activities was dissociated from inhibition in the presence of maximal FA, CA, and BHA or FA, CA, and BHT combinations. Bovine renal mitochondrial cytochrome P-450 levels decreased in cultured bovine proximal tubule cells to nondetectable levels by 8 days in culture. When cultures were treated with BHA and BS, mitochondrial P-450 levels were almost twofold greater than in untreated controls. Percentage changes in mitochondrial P-450 levels closely paralleled percentage changes in hydroxylase activities elicited by antioxidant treatment regimes. Antioxidants which were effective inhibitors of hydroxylase activities in cultured bovine proximal tubule cells were also effective in inhibiting hydroxylase activities in isolated proximal tubule mitochondria, supplemented with a NADPH-generating source. Ki's for inhibition of hydroxylase activities were very similar in cultured cells and in isolated mitochondria.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex. 相似文献
17.
J Gut C Richter R J Cherry K H Winterhalter S Kawato 《The Journal of biological chemistry》1983,258(14):8588-8594
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles by a cholate dialysis technique. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme X CO complex by a vertically polarized laser flash. All cytochrome P-450 was found to be rotationally mobile when co-reconstituted with equimolar amounts of NADPH-cytochrome P-450 reductase in lipid to cytochrome P-450 ((L/P450)) = 1 (w/w] vesicles. Antibodies against NADPH-cytochrome P-450 reductase were raised. Their specificity was demonstrated by Ouchterlony double diffusion analysis. Antireductase Fab fragments were prepared from antireductase IgG by papain digestion. The N-demethylation of benzphetamine, catalyzed by the proteoliposomes, was significantly inhibited by antireductase IgG and by antireductase Fab fragments. Cross-linking of NADPH-cytochrome P-450 reductase by antireductase IgG resulted in complete immobilization of cytochrome P-450 in L/P450 = 1 vesicles. Antireductase IgG also immobilized cytochrome P-450 in L/P450 = 5 vesicles, although the degree of immobilization was slightly smaller. No immobilization of cytochrome P-450 in L/P450 = 1 vesicles was detected in the presence of antireductase Fab fragments or preimmune IgG. These results further support the proposal of the formation of monomolecular complexes between cytochrome P-450 and NADPH-cytochrome P-450 reductase in liposomal membranes (Gut, J., Richter, C., Cherry, R.J., Winterhalter, K.H., and Kawato, S. (1982) J. Biol. Chem. 257, 7030-7036). 相似文献
18.
19.
Cytochrome P-450 and NADPH-cytochrome P-450 REDUctase, both purified from liver microsomes of phenobarbital-pretreated rabbits, have been incorporated into the membrane of phosphoaditylcholine vesicles by the cholate dialysis method. The reduction of cytochrome P-450 by NADPH in this system is biphasic, consisting of two first-order reactions. The rate constant of the fast phase, in which 80--90% of the total cytochrome is reduced, increases as the molar ratio of the reductase to the cytochrome is increased at a fixed ratio of the cytochrome to phosphatidylcholine, suggesting that the rate-limiting step of the fast phase is the interaction between the reductase and the cytochrome. The rate constant of the fast phase also increases when the amount of phosphatidylcholine, relative to those of the two proteins, is decreased. This latter observation suggests that the interaction between the two proteins is effected by their random collision caused by their lateral mobilities on the plane of the membrane of phosphatidylcholine vesicles. The rate constant of the slow phase as well as the fraction of cytochrome P-450 reducible in the slow phase, on the other hand, remains essentially constant even upon alteration in the ratio of the reductase to the cytochrome or in that of the two proteins to phosphatidylcholine. No satisfactory explanation is as yet available for the cause of the slow-phase reduction of cytochrome P-450. The overall activity of benzphetamine N-demethylation catalyzed by the reconstituted vesicles responds to changes in the composition of the sysTEM IN A SIMILAR WAY TO THE FAST-PHASE REDUCTION OF CYTOCHROME P-450, though the latter is not the rate-limiting step of the overall reaction. 相似文献