首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Allocation decisions depend on an organism's condition which can change with age. Two opposite changes in life‐history traits are predicted in the presence of senescence: either an increase in breeding performance in late age associated with terminal investment or a decrease due to either life‐history trade‐offs between current breeding and future survival or decreased efficiency at old age. Age variation in several life‐history traits has been detected in a number of species, and demographic performances of individuals in a given year are influenced by their reproductive state the previous year. Few studies have, however, examined state‐dependent variation in life‐history traits with aging, and they focused mainly on a dichotomy of successful versus failed breeding and non‐breeding birds. Using a 50‐year dataset on the long‐lived quasi‐biennial breeding wandering albatross, we investigated variations in life‐history traits with aging according to a gradient of states corresponding to potential costs of reproduction the previous year (in ascending order): non‐breeding birds staying at sea or present at breeding grounds, breeding birds that failed early, late or were successful. We used multistate models to study survival and decompose reproduction into four components (probabilities of return, breeding, hatching, and fledging), while accounting for imperfect detection. Our results suggest the possible existence of two strategies in the population: strict biennial breeders that exhibited almost no reproductive senescence and quasi‐biennial breeders that showed an increased breeding frequency with a strong and moderate senescence on hatching and fledging probabilities, respectively. The patterns observed on survival were contrary to our predictions, suggesting an influence of individual quality rather than trade‐offs between reproduction and survival at late ages. This work represents a step further into understanding the evolutionary ecology of senescence and its relationship with costs of reproduction at the population level. It paves the way for individual‐based studies that could show the importance of intra‐population heterogeneity in those processes.  相似文献   

2.
Understanding the trade-off between current reproductive effort, future survival and future breeding attempts is crucial for demographic analyses and life history studies. We investigated this trade-off in a population of king penguins (Aptenodytes patagonicus) marked individually with transponders using multistate capture-recapture models. This colonial seabird species has a low annual proportion of non-breeders (13%), despite a breeding cycle which lasts over 1 year. To draw inferences about the consequences of non-breeding, we tested for an effect of reproductive activity on survival and on the probability of subsequent breeding. We found that birds non-breeding in year t show the same survival rate as breeders (two-states analysis: breeding and non-breeding). However, breeders had a lower probability of breeding again the following year. This negative phenotypic correlation suggests the existence of reproductive costs affecting future breeding probability, but it might also be strengthened by late arrival for courtship in year t. A three-state analysis including breeding success revealed that failed breeders in year t have a lower probability to reproduce successfully in year t + 1 than non-breeders in year t, providing some evidence for the existence of reproductive costs. Moreover, successful breeders showed higher survival probability. This positive phenotypic correlation between current reproduction and subsequent survival supports the hypothesis of an heterogeneity in individual quality. Males breeding in year t had a lower probability to breed again in year t + 1 than females, suggesting higher reproductive costs for this sex. Such additional costs might be due to higher male parental investment in the final phase of chick-rearing, which also delays the arrival of males in year t + 1, and decreases their breeding probability. Our study is the first to explore the breeding biology and the demography of penguins without the disturbance of flipper-bands.  相似文献   

3.
Life history theory hypothesises that breeding events induce reproductive costs that may vary among individuals. However, the growing number of studies addressing this question are taxonomically biased, therefore impeding the generalisation of this hypothesis, especially with regard to marine top predators. This study investigated age‐related survival and breeding performances in subantarctic fur seal (Arctocephalus tropicalis) females from Amsterdam Island, southern Indian Ocean. Using multistate capture–recapture models on data obtained from known‐age tagged females over eight consecutive years, we tested for evidence of senescence, individual quality, and reproductive costs in terms of future survival and fecundity. Adult female yearly survival appeared high and constant throughout time. While a two age‐class model was preferred in non‐breeders, breeding females exhibited three age classes with a maximum survival for the prime‐age class (7–12 years). Survival and reproductive probabilities decreased from 13 years onward, suggesting senescence in this population. Survival was lower for non‐breeders than for breeders, among both prime‐aged (0.938 vs 0.982) and older (0.676 vs 0.855) females. Furthermore, non‐breeders exhibited higher probabilities of being non‐breeders the following year than did breeders (0.555 vs 0.414). Such results suggest consistency in female breeding performance over years, supporting the hypothesis that non‐breeding tend to occur among lower quality individuals rather than representing an alternative strategy to enhance residual reproductive value. However, the high proportion of females that did not breed during two consecutive years, and the lower probability of being a successful breeder after a greater reproductive effort confirmed the existence of reproductive costs, especially during the second half of the lactation. These results also suggest that younger age‐classes included a higher proportion of lower quality individuals, which are likely to face higher costs of reproduction. Such hypotheses lead to consider the first breeding event as a filter generating a within‐cohort selection process in females.  相似文献   

4.
Recruitment age plays a key role in life-history evolution. Because individuals allocate limited resources among competing life-history functions, theory predicts trade-offs between current reproduction and future growth, survival and/or reproduction. Reproductive costs tend to vary with recruitment age, but may also be overridden by fixed individual differences leading to persistent demographic heterogeneity and positive covariation among demographic traits at the population level. We tested for evidence of intra- and inter-generational trade-offs and individual heterogeneity relating to age at first reproduction using three decades of detailed individual life-history data of 6,439 capital breeding female southern elephant seals. Contrary to the predictions from trade-off hypotheses, we found that recruitment at an early age was associated with higher population level survival and subsequent breeding probabilities. Nonetheless, a survival cost of first reproduction was evident at the population level, as first-time breeders always had lower survival probabilities than prebreeders and experienced breeders of the same age. However, models accounting for hidden persistent demographic heterogeneity revealed that the trade-off between first reproduction and survival was only expressed in “low quality” individuals, comprising 35% of the population. The short-term somatic costs associated with breeding at an early age had no effect on the ability of females to allocate resources to offspring in the next breeding season. Our results provide strong evidence for individual heterogeneity in the life-history trajectories of female elephant seals. By explicitly modeling hidden persistent demographic heterogeneity we show that individual heterogeneity governs the expression of trade-offs with first reproduction in elephant seals.  相似文献   

5.
While the population growth rate in long‐lived species is highly sensitive to adult survival, reproduction can also significantly drive population dynamics. Reproductive parameters can be challenging to estimate as breeders and nonbreeders may vary in resighting probability and reproductive status may be difficult to assess. We extended capture–recapture (CR) models previously fitted for data on other long‐lived marine mammals to estimate demographic parameters while accounting for detection heterogeneity between individuals and state uncertainty regarding reproductive status. We applied this model to data on 106 adult female bottlenose dolphins observed over 13 years. The detection probability differed depending on breeding status. Concerning state uncertainty, offspring were not always sighted with their mother, and older calves were easier to detect than young‐of‐the‐year (YOY), respectively, 0.79 (95% CI 0.59–0.90) and 0.58 (95% CI 0.46–0.68). This possibly led to inaccurate reproductive status assignment of females. Adult female survival probability was high (0.97 CI 95% 0.96–0.98) and did not differ according to breeding status. Young‐of‐the‐year and 1‐year‐old calves had a significantly higher survival rate than 2‐year‐old (respectively, 0.66 CI 95% 0.50–0.78 and 0.45 CI 95% 0.29–0.61). This reduced survival is probably related to weaning, a period during which young are exposed to more risks since they lose protection and feeding from the mother. The probability of having a new YOY was high for breeding females that had raised a calf to the age of 3 or lost a 2‐year‐old calf (0.71, CI 95% 0.45–0.88). Yet, this probability was much lower for nonbreeding females and breeding females that had lost a YOY or a 1‐year‐old calf (0.33, 95% CI 0.26–0.42). The multievent CR framework we used is highly flexible and could be easily modified for other study questions or taxa (marine or terrestrial) aimed at modeling reproductive parameters.  相似文献   

6.
Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.  相似文献   

7.
We studied the effects of age on breeding performance and survival probability in a peregrine falcon population, using data from a long term monitoring programme (carried out over 16 yr), in which we were able to identify individual birds. We compared the breeding performance and survival of yearling breeders, first‐time adult breeders and adult breeders. We found significant differences in breeding performance but not in survival. Yearling breeders had lower breeding success than older individuals but the breeding performance of inexperienced adults did not differ from that of experienced adults. We did not find changes in terminal breeding success since peregrines in their last year of life sustained the performance levels shown in previous years although with increasing variability. We found no evidence that attempting to breed affected survival probability in any age group. We argue that differences in breeding performance are related to age, not to breeding experience, and that there is an age threshold, coincident with the development of adult plumage, after which breeding performance is not affected either by age or experience. Peregrines that start breeding as yearlings are likely to have greater lifetime reproductive success than birds entering the breeding pool as adults. Consequently, such birds may represent a set of high quality individuals. Our results support the age‐related competence improvement hypothesis as being the relevant explanation for the increase in breeding performance with age.  相似文献   

8.
The little penguin Eudyptula minor is unique among penguin species in being able to fledge chicks from two clutches in one breeding season. Pairs laying two clutches in a given season make a higher reproductive investment, and may be rewarded by a higher reproductive success as they may raise twice as many chicks as pairs laying one clutch. The higher effort made by pairs laying two clutches could correlate negatively with survival, future reproductive performance or offspring survival, indicating a cost of reproduction. Conversely, a positive relationship between the number of clutches produced in a given breeding season and survival, future reproductive performance or offspring survival would indicate that birds laying two clutches belonged to a category of birds with higher fitness, compared to birds laying only one clutch in the season. In this study we used a long‐term data set taken from an increasing population of little penguins in Otago, SE New Zealand. We modelled the relationship between the number of clutches laid in a breeding season and survival probability, reproductive performance in the next breeding season and first year survival of offspring using capture‐recapture modelling.
Birds laying two clutches produced 1.7 times more fledglings during a breeding season than pairs laying one clutch. We found that birds laying two clutches had a higher probability of breeding in the following breeding season, a higher probability of laying two clutches in the following breeding season and a higher survival probability. There was no overall difference in post‐fledging survival between the young of birds producing one clutch and the young of birds producing two clutches. However, the survival of young of single clutch breeders declined with laying date, whereas the young of double clutch breeders had the same survival rate irrespective of laying date. For a subset of data with birds of known age, we found evidence that the probability of laying two clutches increased with age. However, there were also indications for differences among birds in the tendency to lay two clutches that could not be attributed to age. We tentatively interpret our results as evidence of quality difference among little penguin breeders.  相似文献   

9.
We examined individual heterogeneity in survival and recruitment of female Pacific black brant (Branta bernicla nigricans) using frailty models adapted to a capture–mark–recapture context. Our main objectives were (1) to quantify levels of heterogeneity and examine factors affecting heterogeneity, and (2) model the effects of individual heterogeneity on harvest dynamics through matrix models. We used 24 years of data on brant marked and recaptured at the Tutakoke River colony, AK. Multievent models were fit as hidden Markov chain using program E‐SURGE with an adequate overdispersion coefficient. Annual survival of individuals marked as goslings was heterogeneous among individuals and year specific with about 0.23 difference in survival between “high” (0.73)‐ and “low” (0.50)‐quality individuals at average survival probability. Adult survival (0.85 ± 0.004) was homogeneous and higher than survival of both groups of juveniles. The annual recruitment probability was heterogeneous for brant >1‐year‐old; 0.56 (±0.21) and 0.31 (±0.03) for high‐ and low‐quality individuals, respectively. Assuming equal clutch sizes for high‐ and low‐quality individuals and that 80% of offspring were in the same quality class as the breeding female resulted in reproductive values about twice as high for high‐quality individuals than low‐quality individual for a given class of individuals producing differential contributions to population growth among groups. Differences in reproductive values greatly increased when we assumed high‐quality individuals had larger clutch sizes. When we assumed that 50% of offspring were in the same quality class as their mothers and clutches were equal, differences in reproductive values between quality classes were greatly reduced or eliminated (breeders [BRs]). We considered several harvest scenarios using the assumption that 80% of offspring were in the same quality class as their mothers. The amount of compensation for harvest mortality declined as the proportion of high‐quality individuals in the harvest increased, as differences in clutch sizes between groups decreased and as the proportion of BRs in the harvest increased. Synthesis and applications. Harvest at the same proportional level of the overall population can result in variable responses in population growth rate when heterogeneity is present in a population. λ was <1.0 under every scenario when harvest rates were >10%, and heterogeneity caused as much as +2% difference in growth rates at the highest levels of proportional harvest for low‐quality individuals and the greatest differences in qualities between classes of individuals, a critical difference for a population with λ near 1.0 such as the brant. We observed less response in overall survival in the presence of heterogeneity because we did not observe heterogeneity in the annual survival of BRs. This analysis provides a comprehensive view of overall compensation at the population level and also constitutes the first example of a survival‐recruitment model with heterogeneity. Individual heterogeneity should be more explicitly considered in harvest management of vertebrates.  相似文献   

10.
1. It has been largely demonstrated that demographic performances of animals increase with age or experience as a result of an improvement of foraging skills, an increasing reproductive effort or a selection process. However, little is known about the age or experience-related response of populations to environmental variations. Theoretical studies consider that age-related variations of the performances are greater under more restricting conditions, but this has rarely been tested. 2. We tested this hypothesis on a long-lived species, black browed albatross Thalassarche melanophrys Temminck, using a long-term capture-mark-recapture data set. We investigated the responses of a population to climate, by studying the effects of climatic factors and breeding experience on survival and breeding success. 3. First-time breeders appear to be poorer performers compared with experienced adults, with lower reproductive success and lower survival. In addition, interannual variations of demographic traits were partly explained by climatic indices, reflecting environmental variations. The survival probability of black-browed albatrosses varied with experience and climate, and differences being greater under harsh conditions. By contrast, the reproductive success of inexperienced individuals was affected by climatic fluctuations in the same way as the experienced ones. 4. First breeding event acts as a strong selective process on the highly heterogeneous class of inexperienced individuals, suggesting the increase in survival and breeding success with experience may mainly reflect a reduction in the heterogeneity among individual qualities.  相似文献   

11.
We used a long‐term population band‐resight survey database, a parallel reproduction database, and multistate mark–recapture analysis to assess the costs of reproduction, a keystone concept of life‐history evolution, in Nazca boobies (Sula granti) from Punta Cevallos, Isla Española, Galápagos, Ecuador. We used eight years of resight and breeding data to compare models that included sex‐ and state‐specific survival probabilities and probabilities of transition between reproductive states using multistate mark–recapture models. Models that included state‐specific effects were compared with models lacking such effects to evaluate costs of reproduction. The top model, optimizing the trade‐off of model simplicity and fit to the data using the Akaike Information Criterion (AIC), showed evidence of a temporally varying survival cost of reproduction: nonbreeders showed higher annual survival than breeders did in some years. Because increasing investment among breeders showed no negative association with survival and subsequent breeding success, this evidence indicates a cost to both males and females of initiating, but not of continuing, a reproductive attempt. In some cases, breeders reaching the highest reproductive state (fledging an offspring) showed higher survival or subsequent breeding success than did failed breeders, consistent with differences in overall quality that promote both survival and reproduction. Although a male‐biased adult sex ratio was observed in this population of Nazca boobies, models of state‐ and sex‐specific survival and transition probabilities were not supported, indicating that males and females do not incur different costs of reproduction, and that the observed sex ratio bias is not due to sex‐specific adult mortality.  相似文献   

12.
Life history patterns and their associated tradeoffs influence population dynamics, as they determine how individuals allocate resources among competing demographic traits. Here we examined life history strategies in common goldeneyes Bucephala clangula (hereafter goldeneye), a cavity‐nesting sea duck, in the northern boreal forest of interior Alaska, USA. We used multistate capture–mark–recapture models to estimate adult survival, breeding probability, first‐year survival, and recruitment probability using a long‐term nest box study (1997–2010). We detected annual variation in adult survival, which varied from 0.74 ± 0.12 (SE) to 0.93 ± 0.06. In contrast, breeding probability remained relatively high and invariant (0.84 ± 0.11) and was positively related to individual nest success the year prior. Nonbreeding individuals in one year were more likely to remain a nonbreeder, than attempt to breed the following year. First‐year survival decreased with smaller residual duckling mass and larger brood sizes. Probability of recruitment into the breeding population conditioned on survival was constant during the study (0.96 ± 0.06), and did not vary among ages 2–5 yr‐old. Overall, goldeneyes exhibited high, but somewhat variable, adult survival, and high breeding and recruitment probabilities, which is consistent with observed patterns in bet‐hedging species that breed annually in high quality breeding environments, but whose reproductive output is often influenced by stochastic events. Demographic estimates from this study are among the first for goldeneyes within Alaska. Life history patterns are known to vary geographically, therefore, we recommend further examination of life history patterns within the distribution of goldeneyes.  相似文献   

13.
1.?We assessed the relative influence of variability in recruitment age, dynamic reproductive investment (time-specific reproductive states) and frailty (unobserved differences in survival abilities across individuals) on survival in the black-legged kittiwake. Furthermore, we examined whether observed variability in survival trajectories was best explained by immediate reproductive investment, cumulative investment, or both. 2.?Individuals that delayed recruitment (≥ age 7) suffered a higher mortality risk than early recruits (age 3), especially later in life, suggesting that recruitment age may be an indicator of individual quality. Although recruitment age helped explain variation in survival, time-varying reproductive investment had a more substantial influence. 3.?The dichotomy of attempting to breed or not explained variability in survival across life better than other parameterizations of reproductive states such as clutch size, brood size or breeding success. In the kittiwake, the sinequanon condition to initiate reproduction is to hold a nest site, which is considered a very competitive activity. This might explain why attempting to breed is the key level of investment that affects survival, independent of the outcome (failure or success). 4.?Interestingly, the more individuals cumulate reproductive attempts over life, the lower their mortality risk, indicating that breeding experience may be a good indicator of parental quality as well. In contrast, attempting to breed at time t increased the risk of mortality between t and t + 1. We thus detected an immediate trade-off between attempting to breed and survival in this population; however, the earlier individuals recruited, and the more breeding experience they accumulated, the smaller the cost. 5.?Lastly, unobserved heterogeneity across individuals improved model fit more (1·3 times) than fixed and dynamic sources of observed heterogeneity in reproductive investment, demonstrating that it is critical to account for both sources of individual heterogeneity when studying survival trajectories. Only after simultaneously accounting for both sources of heterogeneity were we able to detect the 'cost' of immediate reproductive investment on survival and the 'benefit' of cumulative breeding attempts (experience), a proxy to individual quality.  相似文献   

14.
In numerous iteroparous species, mean fecundity increases with age. Such improvement has been explained by: a) progressive removal of inferior breeders from the breeding population (selection‐hypothesis); b) delayed breeding of higher‐quality phenotypes (delayed‐breeder‐hypothesis); c) longitudinal enhancement of skills associated with age per se (age‐hypothesis); d) progressive improvement in the capability to conduct specific tasks facilitated by accumulated experience (breeding‐experience‐hypothesis); and e) increasing parental investment promoted by declining residual reproductive values (restraint‐hypothesis). To date, there have been few comprehensive tests of these hypotheses. Here, we provide such a study using a long‐term dataset on a long‐lived raptor, the black kite Milvus migrans (maximum lifespan 23 yr). Kites delayed breeding for 1–7 yr and all measures of breeding performance increased linearly or quadratically up to 11 yr of age. There was no support for the delayed‐breeder‐hypothesis: superior phenotypes did not delay breeding longer. Superior breeders were retained longer in the breeding population, consistent with the selection‐hypothesis. All measures of breeding performance increased longitudinally within individuals, supporting the age‐hypothesis, while some of them increased with accumulated previous experience, supporting the breeding‐experience‐hypothesis. Some analyses suggested the existence of trade‐offs between reproduction in the early years of life and subsequent survival, partially supporting the restraint‐hypothesis. The pattern of age‐related improvements in breeding rates observed at the population‐level could be ascribed to the combined effect of the progressive removal of inferior phenotypes from the breeding population and the individual‐level lack of specific skills which are progressively acquired with time and experience. It was also compatible with a longitudinal increase in reproductive investment. Results from previous studies suggest that different mechanisms may operate in different species and that age‐related improvements in reproduction may be frequently promoted by the complex interplay between longitudinal improvements and changes in the relative frequency of productive phenotypes in the breeding population.  相似文献   

15.
Life‐history theory predicts a trade‐off between current and future reproduction to maximize lifetime fitness. In cooperatively breeding species, where offspring care is shared between breeders and helpers, helper presence may influence the female breeders’ egg investment, and consequently, survival and future reproductive success. For example, female breeders may reduce egg investment in response to helper presence if this reduction is compensated by helpers during provisioning. Alternatively, female breeders may increase egg investment in response to helper presence if helpers allow the breeders to raise more or higher quality offspring successfully. In the facultatively cooperative‐breeding Tibetan ground tit Pseudopodoces humilis, previous studies found that helpers improve total nestling provisioning rates and fledgling recruitment, but have no apparent effects on the number and body mass of fledglings produced, while breeders with helpers show reduced provisioning rates and higher survival. Here, we investigated whether some of these effects may be explained by female breeders reducing their investment in eggs in response to helper presence. In addition, we investigated whether egg investment is associated with the female breeder's future fitness. Our results showed that helper presence had no effect on the female breeders’ egg investment, and that egg investment was not associated with breeder survival and reproductive success. Our findings suggest that the responses of breeders to helping should be investigated throughout the breeding cycle, because the conclusions regarding the breeders’ adjustment of reproductive investment in response to being helped may depend on which stage of the breeding cycle is considered.  相似文献   

16.
Age‐related patterns of survival and reproduction have been explained by accumulated experience (‘experience hypothesis’), increased effort (‘effort hypothesis’), and intrinsic differences in phenotypes (‘selection hypothesis’). We examined the experience and effort hypotheses using a 40‐year data set in a population of Leach's storm‐petrels Oceanodroma leucorhoa, long‐lived seabirds for which the effect of phenotypic variation has been previously demonstrated. Age was quantified by time since recruitment (‘breeding age’). The best model of adult survival included a positive effect of breeding age (1, 2, 3+ years), sex (male > female), and year. Among‐individuals variation (fixed heterogeneity) accounted for 31.6% of the variance in annual reproductive success. We further examined within‐individual patterns in reproductive success (dynamic heterogeneity) in the subset of individuals with at least five breeding attempts. Three distinct phases characterized reproductive success – early increase, long asymptotic peak, late decline. No effect of early reproductive output on longevity was found, however, early success was positively correlated with lifetime reproductive success. Reproductive success was lower earlier than later in life. Among the few natally philopatric individuals in the population, age of first breeding had no effect on longevity, lifetime reproductive success, or early reproductive success. No support for the effort hypothesis was found in this population. Instead, age‐specific patterns of survival and reproduction in these birds are best explained by the experience hypothesis over and above the effect of intrinsic differences among individuals.  相似文献   

17.
Density‐dependent breeding performance due to habitat heterogeneity has been shown to regulate populations of territorial species, since the progressive occupation of low quality territories as breeding density increases may cause a decline in the mean per capita fecundity of a population while variation in fecundity increases. Although the preemptive use of sites may relegate low quality individuals to sites of progressively lower suitability, few studies on density dependence have tried to separate the effects of territory quality from individual quality, and none have simultaneously considered the effects of heterospecific competitors. Using two long‐term monitored populations, we assessed the relative contribution of habitat heterogeneity and bird quality (in terms of age) on the productivity of sympatric golden Aquila chrysaetos and Bonelli's eagles Hieraaetus fasciatus under different scenarios of intra‐ and inter‐specific competition. Productivity (number of offspring fledged) varied among territories and average annual productivity was negatively related to its variability in both species and populations, thus giving some support to the habitat heterogeneity hypothesis. However, the effect of habitat heterogeneity on productivity became non‐significant when parental age and local density estimators were included in multivariate analyses. Therefore, temporal changes in bird quality (age) combined with intra‐ and interspecific competition explained variability in territory productivity rather than habitat heterogeneity among territories per se. The recruitment of subadult breeders, a surrogate of mortality in eagles, strongly varied among territories. Habitat heterogeneity in productivity may thus arise not because sites differ in suitability for reproduction but because of differences in factors affecting survival. Territories associated with high mortality risks have a higher probability of being occupied by young birds, whose lower quality, interacting with the density competitors, leads to a reduction of productivity. Site‐dependent variability in adult survival and interspecific competition may be extensive, but so far largely overlooked, factors to be seriously considered for the site‐dependent population regulation framework.  相似文献   

18.
Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), using a 19 year mark–recapture dataset involving more than 11 000 birds. We showed that skipping breeding was more likely in El-Niño years, correlated with an increase in the local sea surface temperature, supporting the hypothesis that it may be partly an adaptive strategy of birds to face the trade-off between survival and reproduction owing to environmental constraints. We also showed that the age-specific probability of first breeding attempt was synchronized among different age-classes and higher in El-Niño years. This result suggested that pre-breeders may benefit from lowered competition with experienced breeders in years of high skipping probabilities.  相似文献   

19.
The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early‐life over late‐life reproduction. Studies on natural vertebrate populations show early reproduction may impair later‐life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early‐life reproduction and female age‐specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age‐specific fecundity and offspring survival, but significantly impaired a female's own later‐life survival. Despite the negative effects of early reproduction on late‐life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade‐off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later‐life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi‐)captive breeding programmes of this endangered species.  相似文献   

20.
Reproductive allocation at one age is predicted to reduce the probability of surviving to the next year or to lead to a decrease in future reproduction. This prediction assumes that reproduction involves fitness costs. However, few empirical studies have assessed whether such costs may vary with the age at primiparity or might be overridden by heterogeneities in individual quality. We used data from 35 years’ monitoring of individually marked semi-domestic reindeer females to investigate fitness costs of reproduction. Using multi-state statistical models, we compared age-specific survival and reproduction among four reproductive states (never reproduced, experienced non-breeders, reproduced but did not wean offspring, and reproduced and weaned offspring) and among contrasted age at primiparity. We assessed whether reproductive costs occurred, resulting in a trade-off between current reproduction and future reproduction or survival, and whether early maturation was costly or rather reflected differences in individual quality of survival and reproduction capabilities. We did not find any evidence for fitness costs of reproduction in female reindeer. We found no cost of gestation and lactation in terms of future reproduction and survival. Conversely, successful breeders had higher survival and subsequent reproductive success than experienced non-breeders and unsuccessful breeders, independently of the age at primiparity. Moreover, it was beneficial to mature earlier, especially for females that successfully weaned their first offspring. Successful females at early primiparity remained successful throughout their life, clearly supporting the existence of marked among-female differences in quality. The weaning success peaked for multiparous females and was lower for first-time breeders, indicating a positive effect of experience on reproductive performance. Our findings emphasize an overwhelming importance of individual quality and experience to account for observed variation in survival and reproductive patterns of female reindeer that override trade-offs between current reproduction and future performance, at least in the absence of harsh winters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号