首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Pellicle formation and lipopeptide production was analysed in standing cultures of different Bacillus subtilis strains producing two or three families of lipopeptides. Despite its ability to produce surfactin, B. Subtilis ATCC 6633 was unable to form stable pellicle at air–water interface. For the ATTC 21332 and ATCC 9943 strains, it was shown for the first time that the lipopeptides were also produced in standing cultures at productivities similar or lower than those obtained when the culture medium is agitated. A differentiated behaviour was observed between these strains in repetitive batch cultures. B. subtilis 9943 formed a wrinkled, thinner and more resistant pellicle than B. subtilis 21332. The structure of the pellicle determined by electron microscopy observations showed that cells of B. subtilis 9943 formed microcolonies whereas those of B. subtilis 21332 rapidly died. Under these conditions, surfactin production by strain 21332 decreased after 2 days whereas it remained stable for B. subtilis 9943 during the 6 days of the cultures. These data indicate that cells of B. subtilis strains growing in pellicle can produce lipopeptides differently depending on their cellular organisation. M. Chollet-Imbert and F. Gancel have contributed equally to the scientific work.  相似文献   

2.
A repeated batch process was performed to culture Bifidobacterium longum CCRC 14634. An on-line device, oxidation-reduction potential (ORP), was used to monitor cell growth and uptake of nutrients in the culture. The ORP of the culture medium decreased substantially during fermentation until nutrients were depleted. Six cycles of batch fermentation using ORP as a control parameter were successfully carried out. As soon as ORP remained constant or increased, three-quarters of the broth was removed, and the same volume of fresh medium was fed to the fermenter for a new cycle of cultivation. Average cell concentrations of 1.9×109 and 3.4×109 cfu ml–1 for repeated batch fermentation in MRS (Lactobacilli MRS broth) and WY (containing whey hydrolyzates, yeast extract, l-cysteine) medium, respectively, were achieved. Cell mass productivities for batch, fed-batch and repeated batch fermentation using MRS medium were 0.51, 0.41, and 0.64 g l–1 h–1, respectively, and those for batch and repeated batch using WY medium were 0.76, 0.99 g l–1 h–1, respectively. The results indicate a possible industrial process to culture Bifidobacteria sp.  相似文献   

3.
The production of extracellular pullulanase by Bacillus licheniformis NRC22 was investigated using different fermentation modes. In batch culture maximal enzyme activity of 18 U/ml was obtained after 24 h of growth. In continuous fermentation by the free cells, maximal reactor productivity (4.15 KU/l/h) with enzyme concentration of 14.8 U/ml and specific productivity of 334.9 U/g wet cells/h was attained at a dilution rate of 0.28/h, over a period of 25 days. B. licheniformis NRC22 cells were immobilized on Ca-alginate. The immobilization conditions with respect to matrix concentration and cell load was optimized for maximal enzyme production. In repeated batch operation, the activity of the immobilized cells was stable during the 10 cycles and the activity remained between 9.8 and 7.7 U/ml. Continuous production of pullulanase by the immobilized cells was investigated in a packed–bed reactor. Maximal reactor productivity (7.0 KU/h) with enzyme concentration of 16.8 U/ml and specific productivity of 131.64 U/g wet cells/h was attained at dilution rate of 0.42/h. The enzyme activity in the effluent started to decline gradually to the level of 8.7 U/ml after 25 days of the operation.  相似文献   

4.
Lactobacillus delbrueckii subsp. lactis strains were developed having increased activity, by gradually acclimatizing the bacteria to acidic conditions over repeated batch culture. Cells from one batch culture were used as the inoculum for the subsequent batch culture and thereby an adapted strain of Lactobacillus was obtained showing improved lactic acid productivity, cell growth and total glucose utilization. Furthermore, the acclimatized cells used significantly less nitrogen for a given level of lactic acid production, which is significant from an industrial point of view. The developed procedure decreases fermentation time and nutrient use, leading to reduced operation costs, while providing a lactic acid yield superior to previously reported methods.  相似文献   

5.
The recombinant Saccharomyces cerevisiae strain C468/pGAC9 has an unstable hybrid plasmid pGAC9, which directs production of glucoamylase. A fibrous cotton material with a good adsorption capability for recombinant S. cerevisiae cells was used as the immobilization matrix in an internal loop airlift-driven fibrous bed bioreactor (ILALFBB) system. With batch cultures in the ILALFBB, the fraction of plasmid-carrying cells was 72% after more than 2 days cultivation, which was two times higher than that in the conventional free-cell culture. Correspondingly, a high activity of glucoamylase (GA; 113 U/l) was achieved with a high productivity of 43 U/l/h. The ILALFBB system also maintained a high fraction of viable plasmid-carrying of 74% for glucoamylase production during repeated-batch cultures, achieving a high glucoamylase activity of 140 U/l with a productivity of 19–130 U/l/h in all 14 batches studied during 19.8 days. The stable and long-term glucoamylase production from the ILALFBB was attributed to the effect of cell immobilization on plasmid stability. Plasmid-carrying cells were preferentially retained in the fibrous matrix because of their ability to adhere to the fiber surface and to form cell aggregates higher than those of plasmid-free cells. The repeated batch using immobilized cell of recombinant S. cerevisiae in the ALALFBB system thus provides a feasible method for stable, long-term and high-level production of glucoamylase.  相似文献   

6.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

7.
Fungal cells of Aureobasidium pullulans ATCC 201253 were immobilized by entrapment in chitosan beads, and the immobilized cells were investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The 1% chitosan-entrapped fungal cells were capable of producing pullulan for two cycles of 168 h using corn syrup as a carbon source. Pullulan production by the immobilized cells increased by 1.6-fold during the second production cycle (5.0 g/l) relative to the first production cycle (3.1 g/l) with the difference in production being statistically significant after 168 h. The productivity of the immobilized cells increased during the second production cycle while its pullulan content decreased. The level of cell leakage from the support remained unchanged for both production cycles.  相似文献   

8.
Aspergillus terreus, isolated from rotting bagasse, showed comparable cellulolytic activities when grown either in the free or immobilized states with cellulose as the sole carbon source. The cultural and nutritional requirements for maximum cellulase production by the organism either in the free or immobilized states were similar, except an increase in the temperature optimum from 30 to 40°C, occurred upon immobilization. In the free state, the maximum filter paper hydrolase, carboxymethylcellulase and β-glucosidase activities produced were 2.1, 13.6, and 3.2 U/ml, respectively, while in the immobilized state, the levels were 1.8, 12.0, and 2.4 U/ml. Production of cellulolytic enzymes by immobilized cells was influenced by the surface area of the support material. In addition, cells in the immobilized state sustained enzyme production for a much longer period with a 4.5-fold increase in productivity during repeated batch when compared to free cells.  相似文献   

9.
Twenty-two Bacillus cereus strains were screened for phospholipase C (PLC, EC 3.1.4.3) activity using p-nitrophenyl phosphorylcholine as a substrate. Two strains (B. cereus SBUG 318 and SBUG 516) showed high activity at elevated temperatures (>70°C) at acidic pH (pH 3.5–6) and were selected for cloning and functional expression using Bacillus subtilis. The genes were amplified from B. cereus DNA using primers based on a known PLC sequence and cloned into the expression vector pMSE3 followed by transformation into B. subtilis WB800. On the amino acid level, one protein (PLC318) was identical to a PLC described from B. cereus, whereas PLC516 contained an amino acid substitution (E173D). PLC production using the recombinant strains was performed by an acetoin-controlled expression system. For PLC516, 13.7 U g−1 wet cell weight was determined in the culture supernatant after 30 h cultivation time. Three purification steps resulted in pure PLC516 with a specific activity of 13,190 U mg−1 protein.  相似文献   

10.
11.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

12.
Cloned Eucalyptus spp. plantations are based in greenhouse production of plants generated by vegetative propagation. Diverse studies have demonstrated that rhizospheric bacteria can stimulate plant growth, and more recently that they can increase rooting in vegetative material. Considering this potential, the objective of this study was to verify the effect of bacterial strains on rooting Eucalyptus globulus. A total of 132 bacterial strains isolated from the rhizosphere of E. globulus and Eucalyptus nitens were studied. The bacterial inoculums in a concentration of 4 × 108 cfu/ml were applied to the rooting substrate at the cutting installation and 45 days after by irrigation. Rooting was evaluated on days 60 and 75 after cutting installation, considering the number of roots as well as their fibrosity and roots biomass. Of the 132 strains evaluated, 26 significantly increased cutting rooting in a range of 191.4–69.4% with respect to the control. Additionally, some strains stimulated the development of fine roots and incremented the roots biomass. The strains identificated that produced a rooting effect were: Bacillus firmus, Bacillus mycoides, Bacillus stearothermophilus, Bacillus subtilis, B. subtilis/amyloliquefaciens, Bacillus circulans, Brevibacillus brevis, Paenibacillus lautus and Stenotrophomona maltophilia. These first trials suggest the potential of these bacteria to be used in clonal production programs for E. globulus.  相似文献   

13.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

14.
In the present study, the production of exopolysaccharides (EPS) by 13 strains of Lactobacillus and 6 strains of Bifidobacterium in a chemical defined medium (CDM) supplemented with 30 g lactose/l was first compared. The highest EPS production of the Lactobacillus strains was found in L. salivarius BCRC 14759 while among the Bifidobacterium strains examined, B. bifidum BCRC 14615 showed the highest EPS production. Analyzes of the effect of lactose concentration and cultivation temperature on EPS production revealed that L. salivarius produced the highest amount of EPS (45.3 mg/l) in CDM supplemented with 5 g lactose/l at 40°C while B. bifidum produced the highest EPS (17.0 mg/l) in CDM supplemented with 40 g lactose/l at 35°C. α-Phosphoglucomutase, UDP-glucose pyrophosphorylase and UDP-galactose-4-epimerase exhibited a markedly notable activity compared with other enzymes examined in the cell extract of both test organisms. This indicates their possible involvement in the biosynthesis of EPS.  相似文献   

15.
Microalgal lipids may be a more sustainable biodiesel feedstock than crop oils. We have investigated the potential for using the crude glycerol as a carbon substrate. In batch mode, the biomass and lipid concentration of Chlorella protothecoides cultivated in a crude glycerol medium were, respectively, 23.5 and 14.6 g/l in a 6-day cultivation. In the fed-batch mode, the biomass and lipid concentration improved to 45.2 and 24.6 g/l after 8.2 days of cultivation, respectively. The maximum lipid productivity of 3 g/l day in the fed-batch mode was higher than that produced by batch cultivation. This work demonstrates the feasibility of crude biodiesel glycerol as an alternative carbon substrate to glucose for microalgal cultivation and a cost reduction of carbon substrate feed in microalgal lipid production may be expected.  相似文献   

16.
A Proteus vulgaris strain named T6 which produced lipase (PVL) with nonpositional specificity had been isolated in our laboratory. To produce the lipase in large quantities, we cloned its gene, which had an opening reading frame of 864 base pairs and encoded a deduced 287-amino-acid protein. The PVL gene was inserted into the Escherichia coli expression vector pET-DsbA, and active lipase was expressed in E. coli BL21 cells. The secretive expression of PVL gene in Bacillus subtilis was examined. Three vectors, i.e., pMM1525 (xylose-inducible), pMMP43 (constitutive vector, derivative of pMM1525), and pHPQ (sucrose-inducible, constructed based on pHB201), were used to produce lipase in B. subtilis. Recombinant B. subtilis WB800 cells harboring the pHPQ-PVL plasmid could synthesize and secrete the PVL protein in high yield. The lipase activity reached 356.8 U/mL after induction with sucrose for 72 h in shake-flask culture, representing a 12-fold increase over the native lipase activity in P. vulgaris. The characteristics of the heterologously expressed lipase were identical to those of the native one.  相似文献   

17.
18.
The Bacillus subtilis wild strains isolated from okpehe, a traditional fermented condiment used as seasoning in Nigeria, the reference and typed strains were investigated for their phenotypic diversity and their technological parameters with a view to obtain adequate data that would enable selection of appropriated starter cultures for vegetable protein fermentation in West Africa. All the 7 strains studied demonstrated diverse phenotypic characteristics and they were identified as Bacillus subtilis, based on the API 50 CHB combined with API 20E profile. Specific sugars that indicated a good hydrolytic potential of the wild strains were fermented. The highest proteinase activity of 90 AU/ml determined quantitatively was observed in the strain Bacillus subtilis BFE 5372, the proteinase was identified by the APIZYM gallery as chymotrypsin. Highest amylase activity of 13 AU/ml was noticed in strain Bacillus subtilis DSM 347 while only 4 strains produced polyglutamic acid with the strain Bacillus subtilis BFE 5359 producing the highest polyglutamate activity of 2.5 mm. Although strain Bacillus subtilis BFE 5301 did not release detectable polyglutamate, the strain demonstrated antagonism against different bacteria and the antimicrobial substance produced by strain Bacillus subtilis BFE 5301 was confirmed as a bacteriocin since its activities were lost after treatment with chymotrypsin and pepsin. The data generated showed the technological parameters that can aid selection of wild strains such as Bacillus subtilis BFE 5301, BFE 5359 and BFE 5372 for optimization of condiment production.  相似文献   

19.
Production of biosurfactant by free and alginate-entrapped cells of Pseudomonas fluorescens Migula 1895-DSMZ was investigated using olive oil as the sole carbon and energy source. Biosurfactant synthesis was followed by measuring surface tension and emulsifying index E24 over 5 days at ambient temperature and at neutral pH. Diffusional limitations in alginate beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. Nevertheless, the emulsion stability was improved and fewer by-products interfered with the biosurfactant activity. A decrease in pH down to 5 in the case of immobilized cells was observed during the first 3 days, after which it returned to its initial value. The minimum values of surface tension were 30 and 35 dynes cm−1 achieved after 40 and 72 h with free and immobilized cells, respectively, while the corresponding maximum E24 values were 67 and 62%, respectively. After separation by acetone precipitation, the biosurfactant showed a rhamnolipid-type in nature, and had a good foaming and emulsifying activities. The critical micellar concentration was found to be 290 mg l−1. The biosurfactant also showed good stability during exposure to high temperatures (up to 120 °C for 15 min), to high salinity (10% NaCl) and to a wide range of pH (4–9).  相似文献   

20.
d-Arabitol production from lactose by Kluyveromyces lactis NBRC 1903 has been studied by following the time courses of concentrations of cell mass, lactose, d-arabitol, ethanol, and glycerol at different temperatures. It was found that temperature is a key factor in d-arabitol production. Within temperatures ranging from 25 to 39°C, the highest d-arabitol concentration of 99.2 mmol l−1 was obtained from 555 mmol l−1 of lactose after 120 h of batch cultivation at 37°C. The yield of d-arabitol production on cell mass growth increased drastically at temperatures higher than 35°C, and the yield reached 1.07 at 39°C. Increasing the cell mass concentration two-fold after 24 h of culture growth at 37°C, the d-arabitol concentration further increased to 168 mmol l−1. According to the distribution of the metabolic products, metabolic changes related to growth phase were also discussed. The stationary-phase K. lactis cells in the batch culture that is started with exposing the precultured inoculum to high osmotic stress, high oxidative stress, and high heat stress are found to be preferable for d-arabitol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号