首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have demonstrated that vitamin D regulates growth and differentiation in bone cells in vitro. In addition, in vivo studies have shown that vitamin D stimulates bone formation, increases the number of osteoblast precursor cells and prevents bone mineral loss. These observations indicate that vitamin D may have anabolic effects on bone, and thus therapeutic potential in the treatment of osteoporosis. However, little is known about the effects of vitamin D on apoptosis in bone cells and about the contribution of this process to the effect of vitamin D on bone mineral loss. To investigate this aspect in more detail, we studied the effect of 1alpha,25(OH)(2)D(3) and a series of analogues on apoptosis in human osteosarcoma cells. No significant induction of apoptosis was observed with any of the compounds after a 5 day treatment period. In contrast, some of the analogues showed a tendency to protect the cells from undergoing apoptosis. This anti-apoptotic effect of vitamin D was further confirmed by the ability of 1alpha,25(OH)(2)D(3) to suppress camptothecin- and staurosporin-induced DNA fragmentation in the cells. In cultures treated simultaneously with 1alpha,25(OH)(2)D(3) in combination with camptothecin or staurosporin, the level of DNA fragmentation was markedly reduced compared with cultures treated with camptothecin or staurosporin alone. On the basis of the present results, it is therefore concluded that vitamin D displays anti-apoptotic effects in human osteoblast-like osteosarcoma cells in vitro. This observation suggests that besides regulating growth and differentiation, vitamin D exerts its anabolic effects on bone by protecting osteoblastic cells from undergoing apoptosis.  相似文献   

2.
Bone morphogenetic proteins (BMPs) and transforming growth factor-beta (TGFbeta) are potent regulators of osteoblast differentiation and proliferation, processes that are crucial in bone remodeling. BMPs and TGFbeta act in concert with other local factors and hormones, among them 1,25(OH)2-vitamin D3 and insulin. Here we show that BMP7 inhibits 1,25(OH)2-vitamin D3-induced differentiation of human osteoblasts, whereas TGFbeta1 stimulates it, as assessed by assays for alkaline phosphatase (ALP) induction, matrix mineralization, and morphology changes. BMP7 or TGFbeta1 alone affects the differentiation of human osteoblasts. Similar results were obtained in assays for ALP induction using conditionally immortalized human osteoblasts (hFOB) and primary osteoblasts obtained from trabecular bone of the femoral head after hip replacement surgery. BMP7 stimulation led to a decrease of 1,25(OH)2-vitamin D3-induced binding of nuclear proteins to a vitamin D response element, as shown by electrophoretic mobility shift assay. Our results suggest that 1,25(OH)2-vitamin D3 modulates in opposite ways the effects of BMP7 and TGFbeta1 on osteoblast differentiation.  相似文献   

3.
The direct effect of 1alpha,25(OH)(2)D(3) on osteoblasts remains unclear. In this study, we evaluated the in vitro effects of 1alpha,25(OH)(2)D(3) and its analogue, 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D(3) (2MD), on osteoblasts from three different species, i.e. bone marrow stromal cells from the Sprague-Dawley (SD) rat, from the C57BL/6 mouse, as well as human osteoblast NHOst cells and human osteosarcoma derived MG-63 cells. We found that in rat cells, both compounds increased cell proliferation, inhibited cell apoptosis and increased alkaline phosphatase (ALP) activity. In mouse cells, however, both compounds initiated cell apoptosis and inhibited ALP activity. In human cells, although cell proliferation was inhibited by both compounds, cell apoptosis was inhibited and ALP activity was enhanced. In each species, 2MD was much more potent than 1alpha,25(OH)(2)D(3). To summarize, species differences should be taken into account in studies of vitamin D effects. However, in all tested species - rat, mouse and human - 2MD is considerably more potent in its effects on osteoblastic cells in vitro than 1alpha,25(OH)(2)D(3).  相似文献   

4.
Surface micron-scale and submicron scale features increase osteoblast differentiation and enhance responses of osteoblasts to 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. beta(1) integrin expression is increased in osteoblasts grown on Ti substrates with rough microarchitecture, and it is regulated by 1alpha,25(OH)(2)D(3) in a surface-dependent manner. To determine if beta(1) has a role in mediating osteoblast response, we silenced beta(1) expression in MG63 human osteoblast-like cells using small interfering RNA (siRNA). In addition, MG63 cells were treated with two different monoclonal antibodies to human beta(1) to block ligand binding. beta(1)-silenced MG63 cells grown on a tissue culture plastic had reduced alkaline phosphatase activity and levels of osteocalcin, transforming growth factor beta(1), prostaglandin E(2), and osteoprotegerin in comparison with control cells. Moreover, beta(1)-silencing inhibited the effects of surface roughness on these parameters and partially inhibited effects of 1alpha,25(OH)(2)D(3). Anti beta(1) antibodies decreased alkaline phosphatase but increase osteocalcin; effects of 1alpha,25(OH)(2)D(3) on cell number and alkaline phosphatase were reduced and effects on osteocalcin were increased. These findings indicate that beta(1) plays a major and complex role in osteoblastic differentiation modulated by either surface microarchitecture or 1alpha,25(OH)(2)D(3). The results also show that beta(1) mediates, in part, the synergistic effects of surface roughness and 1alpha,25(OH)(2)D(3).  相似文献   

5.
6.
1 alpha,25-(OH)(2)D(3) exerts its effects on chondrocytes and enterocytes via nuclear receptors (1,25-nVDR) and a separate membrane receptor (1,25-mVDR) that activates protein kinase C (PKC). 24R,25-(OH)(2)D(3) also stimulates PKC in chondrocytes, but through other membrane mechanisms. This study examined the hypothesis that osteoblasts possess distinct membrane receptors for 1 alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) that are involved in the activation of PKC and that receptor expression varies as a function of cell maturation state. 1 alpha,25-(OH)(2)D(3) stimulated PKC in well differentiated (UMR-106, MC-3T3-E1) and moderately differentiated (ROS 17/2.8) osteoblast-like cells, and in cultures of fetal rat calvarial (FRC) cells and 2T3 cells treated with rhBMP-2 to promote differentiation. 24R,25-(OH)(2)D(3) stimulated PKC in FRC and 2T3 cultures that had not been treated to induce differentiation, and in ROS 17/2.8 cells. MG63 cells, a relatively undifferentiated osteoblast-like cell line, had no response to either metabolite. Ab99, a polyclonal antibody generated to the chick enterocyte 1,25-mVDR, but not a specific antibody to the 1,25-nVDR, inhibited response to 1 alpha,25-(OH)(2)D(3). 1 alpha,25-(OH)(2)D(3) exhibited specific binding to plasma membrane preparations from cells demonstrating a PKC response to this metabolite that is typical of positive cooperativity. Western blots of these membrane proteins reacted with Ab99, and the Ab99-positive protein had an Mr of 64 kDa. There was no cross-reaction with antibodies to the C- or N-terminus of annexin II. The effect of 24,25-(OH)(2)D(3) on PKC was stereospecific; 24S,25-(OH)(2)D(3) had no effect. These results demonstrate that response to 1 alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) depends on osteoblast maturation state and suggest that specific and distinct membrane receptors are involved.  相似文献   

7.
8.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

9.
Vitamin D(3) compounds are currently in clinical trials for human breast cancer and offer an alternative approach to anti-hormonal therapies for this disease. 1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active form of vitamin D(3), induces apoptosis in breast cancer cells and tumors, but the underlying mechanisms are poorly characterized. In these studies, we focused on the role of caspase activation and mitochondrial disruption in 1alpha,25(OH)(2)D(3)-mediated apoptosis in breast cancer cells (MCF-7) in vitro. The effect of 1alpha,25(OH)(2)D(3) on MCF-7 cells was compared with that of tumor necrosis factor alpha, which induces apoptosis via a caspase-dependent pathway. Our major findings are that 1alpha,25(OH)(2)D(3) induces apoptosis in MCF-7 cells by disruption of mitochondrial function, which is associated with Bax translocation to mitochondria, cytochrome c release, and production of reactive oxygen species. Moreover, we show that Bax translocation and mitochondrial disruption do not occur after 1alpha,25(OH)(2)D(3) treatment of a MCF-7 cell clone selected for resistance to 1alpha,25(OH)(2)D(3)-mediated apoptosis. These mitochondrial effects of 1alpha,25(OH)(2)D(3) do not require caspase activation, since they are not blocked by the cell-permeable caspase inhibitor z-Val-Ala-Asp-fluoromethylketone. Although caspase inhibition blocks 1alpha,25(OH)(2)D(3)-mediated events downstream of mitochondria such as poly(ADP-ribose) polymerase cleavage, external display of phosphatidylserine, and DNA fragmentation, MCF-7 cells still execute apoptosis in the presence of z-Val-Ala-Asp-fluoromethylketone, indicating that the commitment to 1alpha,25(OH)(2)D(3)-mediated cell death is caspase-independent.  相似文献   

10.
Novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-dihydroxyvitamin D3 and 26-homo-delta 22-1 alpha,25(R)-dihydroxyvitamin D3 were compared with the native hormone, 1,25-dihydroxyvitamin D3, and with other vitamin D3 derivatives, in inhibition of cell growth, induction of phenotypic differentiation, and c-myc mRNA reduction of HL-60 cells. The degree of inhibition in cell growth caused by 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 was the greatest followed by 26-homo-delta 22-1 alpha,25(R)-(OH)2D3. The ability to reduce NBT was parallel to that to inhibit cellular proliferation. 26-homo-delta 22-1 alpha,25(S)-(OH)2D3, 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, 24-homo-24-F2-1 alpha,25-(OH)2D3, and 1 alpha,24(R)-(OH)2-26-Cl-D3 were more active than 1 alpha,25-(OH)2D3 in the induction of OK-M1+ and OK-Mo-2+ HL-60 cells. Using two color flow cytometric analysis, the percentages of OK-M5(+)- and OK-DR(+)-HL-60 cells were 33% in the treatment with 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 plus interferon-gamma (IFN-gamma) but 14% in the treatment with 1 alpha,25-(OH)2D3 plus IFN-gamma. 26-Homo-delta 22-1 alpha,25(S)-(OH)2D3 has an inhibitory effect on c-myc reduction in treated HL-60 cells. These results suggest that the novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 and 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, have preferential activity in inducing phenotypic differentiation and in inducing cell proliferation related c-myc mRNA activity.  相似文献   

11.
K Tohyama  S Ohmori  T Ueda  Y Ueda  H Sakoda  Y Yoshida  H Uchino 《Blut》1989,58(4):181-186
We added recombinant human gamma-interferon (gamma-IFN) and 1 alpha, 25-dihydroxyvitamin D3 (1 alpha, 25 (OH)2D3) to the bone marrow cells from six patients with RAEB or RAEB-T in liquid suspension cultures. After cultivation for 7 to 9 days, numerical, morphological and functional changes of the cells were assessed. gamma-IFN and 1 alpha, 25 (OH)2D3 additively suppressed cell growth, especially the number of blast cells decreased. The expression of alpha-naphthylbutyrate esterase (NBE) activity appeared to be promoted but that of naphthol AS-D chloroacetate esterase (NAE) activity was apparently suppressed by the addition of gamma-IFN and/or 1 alpha, 25 (OH)2D3. The percentage of NBT reduction-positive cells and latex-phagocytizing cells was only slightly increased by both agents. These results indicate that gamma-IFN and 1 alpha, 25 (OH)2D3 cooperate to induce monocytoid differentiation of the patients' blast cells. Combination therapy with both agents merits further study.  相似文献   

12.
13.
The idea that vitamin D must function at the bone site to promote bone mineralization has long existed since its discovery as an anti-rachitic agent. However, the definite evidence for this is still lacking. In contrast, much evidence has accumulated that 1 alpha,25(OH)2D3 in involved in bone resorption. 1 alpha,25(OH)2D3 tightly regulates differentiation of osteoclast progenitors into osteoclasts. Osteoclast progenitors have been thought to belong to the monocyte-macrophage lineage. 1 alpha,25(OH)2D3 greatly stimulates differentiation and activation of mononuclear phagocytes. Recent reports have indicated that differentiation of mononuclear phagocytes into osteoclasts is strictly regulated by osteoblastic cells, the process of which is also stimulated by 1 alpha,25(OH)2D3. In the differentiation of mononuclear phagocytes into osteoclasts, the target cells for 1 alpha,25(OH)2D3 appear to be osteoblastic stromal cells. Osteoblastic cells produce several proteins such as BGP, MGP, osteopontin and the third component of complement (C3) in response to the vitamin. They appear to be somehow involved in osteoclast differentiation and functions. Thus, 1 alpha,25(OH)2D3 seems to be involved in the differentiation of osteoclast progenitors into osteoclasts directly and also by an indirect mechanism involving osteoblastic cells. The precise role of osteoblastic cells in osteoclast development has to be elucidated in the future.  相似文献   

14.
15.
Growth of 3T3-L1 cells was inhibited by 10(-10)-10(-7)M of 1 alpha,25-dihydroxy vitamin D3 [1 alpha,25(OH)2D3] in a dose- and time-dependent manner. The potency of 1 alpha,25(OH)2D3 in inducing differentiation was low, since 3T3-L1 cells cultured with 1 alpha,25(OH)2D3 did not become mature adipocyte-like cells but were changed to slightly rounded cells containing small droplet-like substances in the cytoplasm and glycerophosphate dehydrogenase (sn-glycerol-3-phosphate: NAD+2-oxidoreductase, EC 1.1.1.8), the marker enzyme of differentiation to adipocyte, did not increase. These results together with the natural occurrence of this vitamin indicate that 1 alpha,25(OH)2D3 may play an important role in the cell growth and differentiation besides such known action as intestinal calcium transport and bone mineral mobilization.  相似文献   

16.
17.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D(3)-26,23-lactone (1alpha,25-(OH)(2)D(3)-26,23-lactone) analogs on 1alpha,25(OH)(2)D(3)-induced differentiation of human leukemia HL-60 cells thought to be mediated by the genomic action of 1alpha, 25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) and of acute promyelocytic leukemia NB4 cells thought to be mediated by non-genomic actions of 1alpha,25-(OH)(2)D(3). We found that the 1alpha,25-(OH)(2)D(3)-26,23-lactone analogs, (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9648), inhibited differentiation of HL-60 cells induced by 1alpha,25-(OH)(2)D(3). However, 1beta-hydroxyl diastereomers of these analogs, i.e. (23S)-25-dehydro-1beta-hydroxyvitamin D(3)-26, 23-lactone (1beta-TEI-9647) and (23R)-25-dehydro-1beta-hydroxyvitamin D(3)-26,23-lactone (1beta-TEI-9648), did not inhibit differentiation of HL-60 cells caused by 1alpha,25-(OH)(2)D(3). A separate study showed that the nuclear vitamin D receptor (VDR) binding affinities of the 1-hydroxyl diastereomers were about 200 and 90 times weaker than that of 1alpha-hydroxyl diastereomers, respectively. Moreover, none of these lactone analogs inhibited NB4 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In contrast, 1beta,25-dihydroxyvitamin D(3) (1beta,25-(OH)(2)D(3)) and 1beta,24R-dihydroxyvitamin D(3) (1beta,24R-(OH)(2)D(3)) inhibited NB4 cell differentiation but not HL-60 cell differentiation. Collectively, the results suggested that 1-hydroxyl lactone analogs, i.e. TEI-9647 and TEI-9648, are antagonists of 1alpha,25-(OH)(2)D(3), specifically for the nuclear VDR-mediated genomic actions, but not for non-genomic actions.  相似文献   

18.
Shany S  Levy Y  Lahav-Cohen M 《Steroids》2001,66(3-5):319-325
It is well established that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, plays a role in regulating proliferation and differentiation of cells, in addition to its classic function in mineral homeostasis. Recent studies have also provided evidence for the involvement of 1alpha,25(OH)(2)D(3) in regulating the immune system. However, therapeutic application of 1alpha,25(OH)(2)D(3) to hyperproliferative diseases such as cancer, or for immunologic purposes, is thwarted by its hypercalcemic activity. In order to overcome this obstacle, analogs of 1alpha,25(OH)(2)D(3) have been produced that exhibit decreased hypercalcemic activity while retaining the growth and immunologic regulating properties. In the present study, the efficacy of 1alpha,24(S)-dihydroxyvitamin D(2) (1alpha,24(S)(OH)(2)D(2)), a vitamin D(2) analog, in restraining cell proliferation was compared to that of 1alpha,25(OH)(2)D(3). In parallel studies, cancer cell lines were grown in increased concentrations (10(-10)-10(-7) M) of each compound for various incubation periods (1-4 days). Growth was assessed by measuring [(3)H]thymidine incorporation. The results revealed that 1alpha,24(S)(OH)(2)D(2) significantly inhibits proliferation to an extent similar to that observed for 1alpha,25(OH)(2)D(3). Moreover, incubating the human leukemia cell line, HL-60, with 1alpha,24(S)(OH)(2)D(2) resulted in an induction of differentiation of these promyelomonocyte cells into monocyte-macrophage-like cells, in a manner similar to that observed with 1alpha,25(OH)(2)D(3). Using a Western procedure, it was also shown that 1alpha,24(S)(OH)(2)D(2) like 1alpha,25(OH)(2)D(3) enhances the expression of vitamin D receptors (VDR) in the rat osteosarcoma cell line, ROS 17/2.8. The expression of tumor necrosis factor (TNF) alpha (TNF-alpha) in human peritoneal macrophages (HPM) obtained from uremic patients treated with continuous ambulatory peritoneal dialysis (CAPD) was found to be regulated by 1alpha,25(OH)(2)D(3) as well as by 1alpha,24(S)(OH)(2)D(2). Incubations of HPM with 1alpha,25(OH)(2)D(3) or 1alpha,24(S)(OH)(2)D(2), have inhibited the expression of TNF-alpha on both mRNA and protein levels. These results suggest that 1alpha,25(OH)(2)D(3) has a role in controlling the rate of inflammation in the peritoneal cavity of CAPD treated patients. Since 1alpha,24(S)(OH)(2)D(2) does not cause hypercalcemia, the present results encourage the possible use of this vitamin D(2) analog in the treatment of cancer and hyper-inflammatory diseases.  相似文献   

19.
Analogs of 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25-(OH)2D3) with substitutions on C-11 were synthesized. Small apolar substitutions (11 alpha-methyl, 11 alpha-fluoromethyl) did not markedly decrease the affinity for the vitamin D receptor, but larger (11 alpha-chloromethyl or 11 alpha- or 11 beta-phenyl) or more polar substitutions (11 alpha-hydroxymethyl, 11 alpha-(2-hydroxyethyl] decreased the affinity to less than 5% of that of 1 alpha,25-OH)2D3. Their affinity for the vitamin D-binding protein, however, increased up to 4-fold. The biological activity of 11 alpha-methyl-1 alpha,25-(OH)2D3 closely resembled that of the natural hormone on normal and leukemic cell proliferation and bone resorption, whereas its in vivo effect on calcium metabolism of the rachitic chick was about 50% of that of 1 alpha,25-(OH)2D3. The 11 beta-methyl analog had a greater than 10-fold lower activity. The differentiating effects of the other C-11 analogs on human promyeloid leukemia cells (HL-60) agreed well with their bone-resorbing activity and receptor affinity, but they demonstrated lower calcemic effects in vivo. Large or polar substitutions on C-11 of 1 alpha,25-(OH)2D3 thus impair the binding of the vitamin D receptor but increase the affinity to vitamin D-binding protein. The effects of many C-11-substituted 1 alpha,25-(OH)2D3 analogs on HL-60 cell differentiation exceeded their activity on calcium metabolism.  相似文献   

20.
The evidence for the promising potential for derivatives of Vitamin D (deltanoids) in the treatment of myeloid leukemias is increasing, but currently is not matched by the understanding of the precise mechanisms by which these anti-neoplastic effects are achieved. Unlike solid tumors in which growth retardation by deltanoids appears to result from inhibition of cell proliferation and the promotion of cell death by apoptosis, control of myeloid leukemia proliferation by deltanoids results from the induction of differentiation of the immature myelo-monocytic cells towards functional monocytic cells. We present here the accumulating evidence that a pathway that is initiated by deltanoid activation of Vitamin D receptor (VDR) and leads to monocytic differentiation of human myeloblastic HL60 cells, includes the MEK-ERK and JNK mitogen-activated protein kinases (MAPKs), their positive and negative regulators and a downstream effector C/EBPbeta. As in other cells, the abundance of VDR protein increases shortly after an exposure of HL60 cells to 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2) D(3)). Other early events include a parallel upregulation of kinase suppressor of Ras (KSR-1) and the activation of the ERK MAPK pathway and data suggest that KSR-1 acts to amplify the signal provided by low concentrations of 1alpha,25(OH)(2) D(3). Maintenance of monocytic differentiation may be enhanced by JNK, but diminished by p38, MAPK signaling. Downstream, one of the targets of these pathways is C/EBPbeta, which can directly interact with the promoter for CD14, a gene characteristically expressed in monocytes. Importantly, in freshly obtained acute myeloid leukemia (AML)-M2 cells exposed to PRI-2191, a novel deltanoid with a modified side chain, upregulation of C/EBPbeta paralleled the induction of monocytic differentiation. These data provide a basis for the hypothesis that deltanoid-induced upregulation of C/EBPbeta bypasses the block to granulocytic differentiation in myeloid leukemia cells by redirecting the cells to monocytic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号