首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the nanomolar enzyme and inhibitor concentration range, 1 mol of mucus proteinase inhibitor (MPI) inhibits 1 mol of neutrophil elastase, cathepsin G, trypsin, and chymotrypsin. In the micromolar concentration range, the enzyme:inhibitor binding stoichiometry is still 1:1 for elastase but shifts to 2:1 for the three other proteinases. These data could be confirmed by three nonenzymatic methods: (i) fluorescence anisotropy measurements of mixtures of proteinases with 5-dimethylaminonaphthalene-1-sulfonylated or fluoresceinylated MPI, (ii) absorption spectrocospy of fluorescein-MPI-proteinase complexes isolated by gel filtration, (iii) analytical ultracentrifugation which showed that the molecular mass of the MPI-chymotrypsin complex is 56 kDa, whereas that of the MPI-elastase complex is 39 kDa. The binary MPI-elastase complex is unable to inhibit trypsin or cathepsin G. On the other hand, 1 mol of elastase displaces 2 mol of trypsin or cathepsin G from their ternary complexes with MPI.  相似文献   

2.
3.
Melanization, an insect immune response, requires a set of hemolymph proteins including pathogen recognition proteins that initiate the response, a cascade of mostly unknown serine proteinases, and phenoloxidase. Until now, only initial and final proteinases in the pathways have been conclusively identified. Four such proteinases have been purified from the larval hemolymph of Manduca sexta: hemolymph proteinase 14 (HP14), which autoactivates in the presence of microbial surface components, and three prophenoloxidase-activating proteinases (PAP1-3). In this study, we have used two complementary approaches to identify a serine proteinase that activates proPAP3. Partial purification from hemolymph of an activator of proPAP3 resulted in an active fraction with two abundant polypeptides of approximately 32 and approximately 37 kDa. Labeling of these polypeptides with a serine proteinase inhibitor, diisopropyl fluorophosphate, indicated that they were active serine proteinases. N-terminal sequencing revealed that both were cleaved forms of the previously identified hemolymph serine proteinase, HP21. Surprisingly, cleavage of proHP21 had occurred not at the predicted activation site but more N-terminal to it. In vitro reactions carried out with purified HP14 (which activates proHP21), proHP21, proPAP3, and site-directed mutant forms of the latter two proteinases confirmed that HP21 activates proPAP3 by limited proteolysis. Like the HP21 products purified from hemolymph, HP21 that was activated by HP14 in the in vitro reactions was not cleaved at its predicted activation site.  相似文献   

4.
The NIa proteinase from pepper vein banding virus (PVBV) is a sequence-specific proteinase required for processing of viral polyprotein in the cytoplasm. It accumulates in the nucleus of the infected plant cell and forms inclusion bodies. The function of this protein in the nucleus is not clear. The purified recombinant NIa proteinase was active, and the mutation of the catalytic residues His-46, Asp-81, and Cys-151 resulted in complete loss of activity. Most interesting, the PVBV NIa proteinase exhibited previously unidentified activity, namely nonspecific double-stranded DNA degradation. This DNase activity of the NIa proteinase showed an absolute requirement for Mg(2+). Site-specific mutational analysis showed that of the three catalytic residues, Asp-81 was the crucial residue for DNase activity. Mutation of His-46 and Cys-151 had no effect on the DNase activity, whereas mutant D81N was partially active, and D81G was completely inactive. Based on kinetic analysis and molecular modeling, a metal ion-dependent catalysis similar to that observed in other nonspecific DNases is proposed. Similar results were obtained with glutathione S-transferase-fused PVBV NIa proteinase and tobacco etch virus NIa proteinase, confirming that the DNase function is an intrinsic property of potyviral NIa proteinase. The NIa protein present in the infected plant nuclear extract also showed the proteinase and the DNase activities, suggesting that the PVBV NIa protein that accumulates in the nucleus late in the infection cycle might serve to degrade the host DNA. Thus the dual function of the NIa proteinase could play an important role in the life cycle of the virus.  相似文献   

5.
6.
The ability of plasma proteinase inhibitors to inactivate human chymase, a chymotrypsin-like proteinase stored within mast cell secretory granules, was investigated. Incubation with plasma resulted in over 80% inhibition of chymase hydrolytic activity for small substrates, suggesting that inhibitors other than alpha 2-macroglobulin were primarily responsible for chymase inactivation. Depletion of specific inhibitors from plasma by immunoadsorption using antisera against individual inhibitors established that alpha 1-antichymotrypsin (alpha 1-AC) and alpha 1-proteinase inhibitor (alpha 1-PI) were responsible for the inactivation. Characterization of the reaction between chymase and each inhibitor demonstrated in both cases the presence of two concurrent reactions proceeding at fixed relative rates. One reaction, which led to inhibitor inactivation, was about 3.5 and 4.0-fold faster than the other, which led to chymase inactivation. This was demonstrated in linear titrations of proteinase activity which exhibited endpoint stoichiometries of 4.5 (alpha 1-AC) and 5.0 (alpha 1-PI) instead of unity, and SDS gels of reaction products which exhibited a banding pattern indicative of both an SDS-stable proteinase-inhibitor complex and two lower Mr inhibitor degradation products which appear to have formed by hydrolysis within the reactive loop of each inhibitor. At inhibitor concentrations approaching those in plasma where inhibitor to chymase concentration ratios were in far excess of 4.5 and 5.0, the rate of chymase inactivation by both serpin inhibitors appeared to follow pseudo-first order kinetics. The "apparent" second order rate constants of inactivation determined from these data were about 3000-fold lower than the rate constants reported for human neutrophil cathepsin G and elastase with alpha 1-AC and alpha 1-PI, respectively. This suggests that chymase would be inhibited about 650-fold more slowly than these proteinases when released into plasma. These studies demonstrate that although chymase is inactivated by serpin inhibitors of plasma, both inhibitors are better substrates for the proteinase than they are inhibitors. This finding along with the slow rates of inactivation indicates that regulation of human chymase activity may not be a primary function of plasma.  相似文献   

7.
8.
  • 1.1. A cysteine proteinase and cysteine proteinase inhibitor have been purified from Tetrahymena.
  • 2.2. The proteinase was purified by ammonium sulphate fractionation, gel filtration, ion exchange chromatography and affinity chromatography, and appeared homogeneous by gel filtration and electrophoresis (mol. wt approx 28,000). It hydrolysed BAPNA, degraded azocasein, and converted 80S ribosomes to subunits. Thiol reagents inhibited these activities.
  • 3.3. The inhibitor was purified by heat treatment, ammonium sulphate fractionation and ion exchange chromatography, and appeared homogeneous by gel filtration and electrophoresis (mol. wt approx 12.500). The inhibitor was heat stable and it inhibited papain, as well as the Tetrahymena proteinase.
  相似文献   

9.
10.
In a continuing study of the physiological role of protein breakdown in the hypothalamus, acid proteinase from bovine hypothalamus was purified about 1000-fold. The molecular weight of the enzyme was approximately 50,000. Maximal activity against hemoglobin was obtained at pH 3.2–3.5; serum albumin was split much more slowly. Hypothalamus acid proteinase was partially inhibited by -phenyl pyruvate, or benzethonium Cl, and was completely inhibited by low concentrations of pepstatin. This proteinase splits somatostatin, substance P, and analogs of substance P. The probable sites of enzyme action on these peptides were determined by the end group dansyl technique. The enzyme, most likely cathepsin D, may play an important role in the formation and breakdown of peptide hormones in the hypothalamus.  相似文献   

11.
Summary

Three kinds of yolk proteins (vitellin, egg-specific protein and 30 k-proteins) are found in silkmoth eggs and have been well characterized. Essentially these proteins are considered to be amino acid reserves for developing embryos. Since at an early stage of egg development the cysteine proteinase accounts for the majority of the total proteinase activity, it may be involved in the degradation of yolk proteins. The enzyme is stored in the eggs as an inactive pro-form, indicating that the activation of the enzyme might be one of the key steps in yolk protein degradation. To investigate at the molecular level how yolk proteins degradation takes place, we have studied Bombyx acid cysteine proteinase (BCP) during an early period of embryonic development. We summarize how proteinases are regulated and are involved in the degradation of Bombyx yolk proteins during embryogenesis. These will be discussed mainly in light of recent results obtained from eggs of the silkmoth, Bombyx mori.  相似文献   

12.
13.
An extracellular proteinase secreted by the thermophilic bacteria Thermomonospora fusca YX (YX-proteinase) is a serine proteinase as shown by its inactivation by the site specific reagents, phenylmethanesulfonyl fluoride, dansyl fluoride, and carbobenzoxy-L-phenylalanine chloromethyl ketone. This conclusion is further supported by the effect of various proteinase inhibitors on its activity. The activity of the proteinase toward small synthetic ester substrates shows that the enzyme has a primary specificity for the aromatic and hydrophobic amino acids. The amino acid composition and NH2-terminal sequence, as well as its size, suggest that the enzyme is related to the chymotrypsin-like microbial proteinase, alpha-lytic protease from Myxobacter 495 and protease A and B from Streptomyces griseus.  相似文献   

14.
《Phytochemistry》1987,26(2):365-366
Snake gourd proteinase A2 was rapidly inactivated by methylene blue catalysed photooxidation at pH 7.8 and 25°. The rate of inactivation was pH-dependent and became slower at lower pH values, suggesting the involvement of some histidine residues in the inactivation. Changes in amino acid composition occurred only with histidine residues. One mole or more of histidine residues in the molecule are of essential importance in the catalytic function of snake gourd proteinase A2.  相似文献   

15.
16.
Evidence that establishes the mechanism of the classes of plant proteinase inhibitors (PIs) is evaluated. Of the eight classes of PIs, six are unique to plants. Except for plant serpins, there is evidence that PIs from all other classes form tight binding complexes with their target proteinases, and that they follow the standard mechanism of inhibition.  相似文献   

17.
18.
Lactobacillus murinus CNRZ 313 produced an extracellular proteinase irrespective of the Ca2+ content in the culture medium. Proteinase activity was optimal at 37 °C and pH 7.5 in phosphate buffer (0.2 mol/L). It was stimulated by Mg2+ and Mn2+ and was inhibited by Zn2+. Ca2+ did not affect the enzymic activity but the proteinase liberated in the presence of this ion is more stable. The enzyme was purified to homogeneity from cell-free culture medium.  相似文献   

19.
The NARC 1 gene encodes a novel proteinase K family proteinase. The domain structure of rat Narc 1 resembles that of the subtilisin-like proprotein convertases (SPCs), except that rNarc 1 lacks the canonical P-domain of SPCs, retaining only the RGD motif as part of what might be a cryptically functioning P-domain. Narc 1 undergoes autocatalytic intramolecular processing at the site LVFAQ/, resulting in the cleavage of its prosegment and the generation of an active proteinase with a broad alkaline pH optimum and no apparent calcium requirement for activity. Both primary and secondary structural determinants influence Narc 1 substrate recognition. Our functional characterization of Narc 1 reinforces the inference drawn from the analysis of its predicted structure that this enzyme is most closely related to representatives of the proteinase K family, but that it is also sufficiently different to warrant its possible classification in a separate sub-family.  相似文献   

20.
When the proteinases of the squid mantle muscle were extracted in the presence of dithiothreitol (DTT), the acid proteinase activity increased, indicating that the squid mantle muscle contains a considerable amount of the acid thiol proteinase. The crude extract hydrolyzed neither alpha-N-benzoyl-D,L-arginine-p-nitroanilide (BAPA) nor azocasein, thus refuting the presence of cathepsins B and L in the mantle muscle. The cathepsin D-like proteinase and the acid thiol proteinase were separated by Sephadex A-50 column chromatography. Each of the above partially purified proteinases was able to degrade carp actomyosin at pH 2.5 and 5.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号