首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. 2012 ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. ( 2014 ) provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. ( 2014 ) use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. 1 ). By combining the two methods, De Kort et al. ( 2014 ) were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. ( 2014 ) provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. 2013 ).  相似文献   

2.
Studies comparing the abundance of frugivorous bats in shade‐coffee plantations and forest fragments report contradictory results, and have not taken into account the landscape context in which coffee plantations are immersed. Variables of population composition such as abundance, sex proportion, and reproductive condition, together with biological tags (i.e., bat fly prevalence), can provide information about spatiotemporal dynamics of habitats used by bats. In the central part of Veracruz, Mexico, we compared population variables and ectoparasite prevalence of the highland yellow‐shouldered bat (Sturnira ludovici) in two landscapes, one dominated by shade‐coffee plantations and another by forest fragments. Comparing these attributes between these two landscapes will increase our knowledge about the role of this agro‐ecosystem in the conservation of this species, which is an important seed disperser of cloud forest vegetation. Total abundance and proportion of females was greater in forest fragments than in coffee plantations, whereas the percentage of reproductive females and bat fly prevalence was similar between landscapes. Our results show that landscapes with forest fragments harbor the greatest abundance of S. ludovici, but shade‐coffee plantations also are utilized by S. ludovici and likely adjacent forest remnants provide enough food resources for this species and other frugivores. Moreover, this study provides more evidence documenting the importance of preserving the last cloud forest fragments in the central region of Veracruz, Mexico, and suggests that using shade‐coffee plantations to connect forest fragments may be an effective way of maintaining populations of S. ludovici and likely other volant frugivores.  相似文献   

3.
4.
The littoral forests of Madagascar are relatively unexplored ecosystems that are considered seriously threatened by deforestation and habitat fragmentation. We set out to describe the bird communities inhabiting the littoral forest remnants in three different sub-regions of southeastern Madagascar to determine the national importance of these forests for bird conservation. In total, 77 bird species were found inhabiting 14 littoral forest remnants. Of these species, 40 are endemic to Madagascar and a further 21 are endemic to the Indian Ocean sub-region, consisting of Madagascar, the Comoros and the Mascarenes. The matrix habitats (Melaleuca forests, marécage swamp forest, Eucalyptus plantations and Erica grassland) that immediately surround the littoral forests were depauperate of bird species and contained few species that were found within the littoral forests. The geographic location of littoral forest remnants had an important role in determining what bird species occurred within them, with the northern remnants having similar bird communities to nearby humid forest whilst the most southern remnant had a bird community that resembled those of nearby spiny forest habitats. Eleven bird species that have been previously described as being habitat-restricted endemics to either spiny forests or humid forests, were found in littoral forest remnants. These results suggest that these littoral forests may play an important transitional role between the two other major natural habitats (spiny forest and humid forest) of southeastern Madagascar. On this basis we advocate that the littoral forest remnants of southeastern Madagascar should be afforded continuing conservation priority.  相似文献   

5.
The forest‐like characteristics of agroforestry systems create a unique opportunity to combine agricultural production with biodiversity conservation in human‐modified tropical landscapes. The cacao‐growing region in southern Bahia, Brazil, encompasses Atlantic forest remnants and large extensions of agroforests, locally known as cabrucas, and harbors several endemic large mammals. Based on the differences between cabrucas and forests, we hypothesized that: (1) non‐native and non‐arboreal mammals are more frequent, whereas exclusively arboreal and hunted mammals are less frequent in cabrucas than forests; (2) the two systems differ in mammal assemblage structure, but not in species richness; and (3) mammal assemblage structure is more variable among cabrucas than forests. We used camera‐traps to sample mammals in nine pairs of cabruca‐forest sites. The high conservation value of agroforests was supported by the presence of species of conservation concern in cabrucas, and similar species richness and composition between forests and cabrucas. Arboreal species were less frequently recorded, however, and a non‐native and a terrestrial species adapted to open environments (Cerdocyon thous) were more frequently recorded in cabrucas. Factors that may overestimate the conservation value of cabrucas are: the high proportion of total forest cover in the study landscape, the impoverishment of large mammal fauna in forest, and uncertainty about the long‐term maintenance of agroforestry systems. Our results highlight the importance of agroforests and forest remnants for providing connectivity in human‐modified tropical forest landscapes, and the importance of controlling hunting and dogs to increase the value of agroforestry mosaics.  相似文献   

6.
A better understanding of phytohormone physiology can provide an essential basis to coherently achieve a conservation drive/strategy for valuable plant species. We evaluated the distribution pattern of cytokinins (CKs) and phenolic compounds in different organs of 1‐year‐old greenhouse‐grown Tulbaghia simmleri pre‐treated (during micropropagation) with three aromatic CKs (benzyladenine = BA, meta‐topolin = mT, meta‐topolin riboside = mTR). The test species is highly valuable due to its medicinal and ornamental uses. Based on UHPLC‐MS/MS quantification, mT and mTR pre‐treated plants had the highest total CK, mostly resulting from the isoprenoid CK‐type, which occurred at highest concentrations in the roots. Although occurring in much lower concentrations when compared to isoprenoid CKs, aromatic CKs were several‐fold more abundant in the root of mT pre‐treated plants than with other treatments. Possibly related to the enhanced aromatic CKs, free bases and ribonucleotides, plants pre‐treated with mT generally displayed better morphology than the other treatments. A total of 12 bioactive phenolic compounds, including four hydroxybenzoic acids, five hydroxycinnamic acids and three flavonoids at varying concentrations, were quantified in T. simmleri. The occurrence, distribution and levels of these phenolic compounds were strongly influenced by the CK pre‐treatments, thereby confirming the importance of CKs in phenolic biosynthesis pathways.  相似文献   

7.
Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α‐diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α‐diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old‐growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.  相似文献   

8.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

9.
This study focuses on the documentation of traditional plant usage among Kichwa, the indigenous people from Canton Loreto, Ecuador. The relationship between people, plants and the natural environment is demonstrated in an ethnobotanical garden at the Capacity Building Centre of the town. The construction site for the ethnobotanical garden is a 1.5 ha secondary forest. The forest was analyzed with a local key informant and 150 different useful species were found. The plant species recorded are mainly used for medicinal purposes, followed by edible plants, and finally by food sources for animals. Open-ended interviews were conducted with the aim of identifying the most commonly used plant species among the Kichwas. The results showed that Ilex guayusa ranked most popular, followed by Myroxylon balsamum, Cedrela odorata, Banisteriopsis caapi, and Urera caracasana. Focus groups were held and the most important plant applications were evaluated. The collected data illustrated that Kichwas attach great importance to medicinal and ritual plants, followed by plants used for handcraft. Edible plants rank afterwards, followed by dye plants and plants used for hunting. The above findings serve as the backbone of the design for the ethnobotanical garden. The garden acts as a tool to preserve and promote the knowledge of plants, focusing mainly on medicinal plants. The growing areas for the plant species were determined according to their importance to the Kichwas. The concept of the ethnobotanical garden conveys the holistic picture drawn from the investigation on people and plants of the Kichwas.  相似文献   

10.
Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long‐term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient‐poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient‐rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLempN). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat‐specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.  相似文献   

11.
Ectomycorrhizal fungi constitute an important component of forest ecosystems that enhances plant nutrition and resistance against stresses. Diversity of ectomycorrhizal (EcM) fungi is, however, affected by host plant diversity and soil heterogeneity. This study provides information about the influence of host plants and soil resources on the diversity of ectomycorrhizal fungal fruiting bodies from rainforests of the Democratic Republic of the Congo. Based on the presence of fungal fruiting bodies, significant differences in the number of ectomycorrhizal fungi species existed between forest stand types (p < 0.001). The most ectomycorrhizal species‐rich forest was the Gilbertiodendron dewevrei‐dominated forest (61 species). Of all 93 species of ectomycorrhizal fungi, 19 demonstrated a significant indicator value for particular forest stand types. Of all analysed edaphic factors, the percentage of silt particles was the most important parameter influencing EcM fungi host plant tree distribution. Both host trees and edaphic factors strongly affected the distribution and diversity of EcM fungi. EcM fungi may have developed differently their ability to successfully colonise root systems in relation to the availability of nutrients.  相似文献   

12.
Two processes globally threatening natural ecosystems are changes in land use and deforestation. Two methods used to restore threatened ecosystems are: (1) unassisted forest regeneration, which promotes the establishment of plants and fauna arriving from surrounding habitats and (2) assisted restoration, which involves the reconstruction of forests by planting native or exotic trees. Functional attributes, such as plant–pollinator interactions, are essential for ecosystem recovery. Unfortunately, information regarding the effect of restoration on pollination systems is limited. Forty years ago, a tropical cloud forest in Colombia was restored through unassisted forest regeneration, as well as by establishing monospecific plantations of the exotic Chinese ash Fraxinus chinensis. The understories of both restoration strategies were colonized by the beetle‐pollinated aroid Xanthosoma daguense. Using isolation‐by‐distance and multi‐strata mark‐recapture models, I estimated in each restoration strategy two fundamental pollination processes: (1) the magnitude of X. daguense pollination neighborhood and (2) the directionality of pollen flow among plants colonizing both restoration strategies. In addition, I recorded pollinator visits and fruit production for X. daguense in each restored habitats. The pollination neighborhood of X. daguense in the ash plantation is two times larger than its pollination neighborhood in natural regeneration. Inflorescences in the ash plantation donated 10 times more pollen to inflorescences in natural regeneration. Plants in natural regeneration produced two times more infructescences and more fruits than plants in ash plantation. Results show that the selection of different restoration strategies can alter two major components of plant–pollinator interactions in plants colonizing restored habitats, pollination neighborhoods, and pollen flow within the population.  相似文献   

13.
Impaired ecosystems are converted back to natural ecosystems or some other target stage by means of restoration and management. Due to their agricultural legacy, afforested fields might be valuable compensatory habitats for rare fungal species that require nutrient‐rich forest soils. Using a large‐scale field experiment in Finland, we studied community composition of macrofungi (agarics and boletes) on former fields, which had been afforested as monocultures 20 years ago using native spruce Picea abies, pine Pinus sylvestris, and birch Betula pendula. We studied the effect of soil quality, tree species, and site on community composition and structure. Many nutrient‐demanding as well as rare fungal species were recorded, particularly from pine and spruce plots. Pine plots supported more nutrient‐demanding fungi than birch plots. There was no relationship between soil pH, bulk density, P, N, or Ca, and species richness of nutrient‐demanding fungi. Fungal community composition was more similar within sites than among sites for all tree species. Among sites, spruce plots had the smallest fungal species turnover, and birch plots largest. Within sites, however, fungal species turnover from plot to plot was similar among tree species. Our results indicate that tree species has a relatively mild influence on species composition of fungi after 20 years of succession. Interestingly, the results show that afforested fields can be valuable complementary habitats for rare, red‐listed, and nutrient‐demanding fungal species. Field afforestation is a potential conservation tool that could be used to complement the poor representation of rare habitat types in highly fragmented protected area networks.  相似文献   

14.
Abstract

The most commonly used old‐growth forest indicators are structural attributes; nevertheless, they do not necessarily represent the biodiversity value of old‐growth forests. The aim of this study is to analyse the relationships between species richness data of different taxa and structural indicators of old‐growth and to identify taxonomic/functional groups, species and structural attributes that may be used as indicators of old‐growth. To achieve this goal we sampled forest structure, vascular plants, lichens, bryophytes, fungi, saproxylic beetles and birds in mature and old‐growth stands in southern Italy. We calculated Spearman’s correlation coefficients between species richness data and structural attributes. Analyses of indicator species, co‐occurrences and two‐way clusters were performed on the multi‐taxonomic list. The group of vascular plants most significantly correlated with other groups in terms of species richness; furthermore, it displays the highest proportion of between‐group co‐occurrences. The resulting multi‐taxonomic list of potential indicators may serve as an effective means of detecting and monitoring forest ecosystems; however, for this goal, structure‐based indicators, such as forest structural attributes and vascular plant species composition, are of primary importance.  相似文献   

15.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

16.
Aim This study investigates diversity patterns of vascular plants and plant‐feeding geometrid moths during montane rain forest regeneration in relation to the biogeographical and historical conditions of Mt Kilimanjaro. Location Investigations were undertaken on the south‐western slopes of Mt Kilimanjaro at altitudes between 2075 and 2265 m. Methods Thirteen plots were selected for this study. Four of these were situated in the middle of large clearings (> 1000 m2), three in secondary forest, two in mature forest remnants surrounded by secondary forest and four plots within continuous closed mature forest. Vascular plant species were recorded in an area of 20 × 20 m2. Geometrid moths were attracted using lamps placed inside reflective gauze cylinders. Results Ninety‐three species of vascular plants were recorded on the plots. Plant diversity increased in the course of forest regeneration from clearings and secondary forest to mature forest remnants and mature forest. This increase was visible in all vegetation strata as well as in the species number of Dicotyledoneae. The diversity of geometrid moths conversely decreased from early to late successional stages. A total of 2276 Geometridae representing 114 morphospecies were included in the study. Local values of Fisher's α varied from 10.3 to 18.3 on clearings and in secondary forest, whereas they remained below 8.0 in mature forest and mature forest remnants. There was a significant negative correlation between the diversity of Geometridae and the number of dicots, and of plant species in the shrub layer. Main conclusions Contrary to an expected positive correlation between the diversity of vascular plants and herbivorous geometrid moths, diversity patterns of these two groups are strongly diverging due to biogeographical and ecological factors differently affecting the two groups. The increase in plant diversity can chiefly be explained with an increase in epiphyte diversity which is related to the occurrence of suitable habitats in extensive moss layers on huge Ocotea usambarensis (Engl.) trees in the mature forest. The low diversity of geometrid moths in these forests may be connected to the isolation and relatively young age of the montane rain forests on Mt Kilimanjaro. Hence only a small number of moth species adapted to the cool and perhumid conditions within moist mature forest have so far immigrated into these habitats, and time was insufficient for the evolution of many new species.  相似文献   

17.
Study of the congruence of population genetic structure between hosts and pathogens gives important insights into their shared phylogeographical and coevolutionary histories. We studied the population genetic structure of castrating anther‐smut fungi (genus Microbotryum) and of their host plants, the Silene nutans species complex, and the morphologically and genetically closely related Silene italica, which can be found in sympatry. Phylogeographical population genetic structure related to persistence in separate glacial refugia has been recently revealed in the S. nutans plant species complex across Western Europe, identifying several distinct lineages. We genotyped 171 associated plant–pathogen pairs of anther‐smut fungi and their host plant individuals using microsatellite markers and plant chloroplastic single nucleotide polymorphisms. We found clear differentiation between fungal populations parasitizing S. nutans and S. italica plants. The population genetic structure of fungal strains parasitizing the S. nutans plant species complex mirrored the host plant genetic structure, suggesting that the pathogen was isolated in glacial refugia together with its host and/or that it has specialized on the plant genetic lineages. Using random forest approximate Bayesian computation (ABC‐RF), we found that the divergence history of the fungal lineages on S. nutans was congruent with that previously inferred for the host plant and probably occurred with ancient but no recent gene flow. Genome sequences confirmed the genetic structure and the absence of recent gene flow between fungal genetic lineages. Our analyses of individual host–pathogen pairs contribute to a better understanding of co‐evolutionary histories between hosts and pathogens in natural ecosystems, in which such studies remain scarce.  相似文献   

18.
19.
20.
Leaf functional traits are widely used to detect and explain adaptations that enable plants to live under various environmental conditions. This study aims to determine the difference in leaf functional traits among four forest types of Pinus massoniana coniferous and broad‐leaved mixed forests by leaf morphological, nutrients, and stoichiometric traits in the subtropical mountain, Southeastern China. Our study indicated that the evergreen conifer species of P. massoniana had higher leaf dry matter content (LDMC), leaf C content, C/N and C/P ratios, while the three deciduous broad‐leaved species of L. formosana, Q. tissima, and P. strobilacea had higher specific leaf area (SLA), leaf N, leaf P nutrient contents, and N/P ratio in the three mixed forest types. The results showed that the species of P. massoniana has adapted to the nutrient‐poor environment by increasing their leaf dry matter for higher construction costs thereby reducing water loss and reflects a resource conservation strategy. In contrast, the three species of L. formosana, Q. tissima, and P. strobilacea exhibited an optimized resource acquisition strategy rather than resource conservation strategy in the subtropical mountain of southeastern China. Regarding the four forest types, the three mixed forest types displayed increased plant leaf nutrient contents when compared to the pure P. massoniana forest, especially the P. massonianaL. formosana mixed forest type (PLM). Overall, variation in leaf functional traits among different forest types may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to significant effects on leaf function, especially for their acquisition of nutrients and use of light. The results of this study are beneficial to reveal the changes in plant leaf functional traits at the regional scale, which will provide a foundation for predicting changes in leaf traits and adaptation in the future environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号