首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was set up to examine the effect of plot patterns on the accuracy of phytosociological characterization of tropical vegetation. Fifteen and twenty square plots of 1 ha were demarcated, respectively, in woodland and dense forest in Bénin. Each 1 ha plot was divided into 100 quadrats of one 100 m2. Species of trees in each quadrat were identified and recorded. The cost in terms of time required to record tree species in each 1 ha plot and five random quadrats in a 1 ha plot were also recorded to compute the mean inventory effort for a team of three foresters. From the 100 quadrats in a 1 ha plot, fourteen independent subplots of square and rectangular plots with different sizes were considered by grouping together adjacent quadrats of 100 m2. Eigenanalysis was carried out to compare the subplots. Moreover, the relationship between the relative loss of accuracy (RLA) and the size of subplots was modelled. Plot size highly influenced the RLA (P < 0.05). Findings indicated that the square plots of 1500 and 1000 m2 with an inventory effort of 0.35 and 0.20 man‐days per subplot, respectively in tropical dense forests and woodlands appeared to be the most efficient in the phytosociological characterization of woody vegetation.  相似文献   

2.
This study assessed the effectiveness of plot patterns for estimating recruit density of woody species in the dense forest of Lama Reserve (Bénin). The experimental design consisted of thirty 0.04 ha plots randomly settled in the forest and each subdivided into four hundred 1‐m² quadrats. Within each quadrat, recruits (dbh ≤10 cm) were counted and saplings (h ≥ 2 m and 2 cm ≤ dbh < 7 cm) and young trees (h ≥ 2 m and 7 cm ≤ dbh < 10 cm) were measured in dbh. In each 0.04 ha plot, seven different plot shapes and sizes were considered by grouping adjacent 1‐m2 quadrats. Relationship between mean square error of the estimation of the density of recruitments and the plot sizes was modelled using the Smith law. Results obtained showed an average value of density of recruitments of 10.7 plants/m2 with Green index value of 0.01. Shape and size of plots highly influenced the estimation of the density of recruitments. Rectangular plots of length/width = 2 and size of 72 m² (12 m × 6 m) were most efficient for the estimation of the density of recruitments in tropical dense forest with standard error of 0.79 plants/m2.  相似文献   

3.
The identification of shape and size of sampling units that maximises the number of plant species recorded in multiscale sampling designs has major implications in conservation planning and monitoring actions. In this paper we tested the effect of three sampling shapes (rectangles, squared, and randomly shaped sampling units) on the number of recorded species. We used a large dataset derived from the network of protected areas in the Siena Province, Italy. This dataset is composed of plant species occurrence data recorded from 604 plots (10 m × 10 m), each divided in a grid of 16 contiguous subplot units (2.5 m × 2.5 m). Moreover, we evaluated the effect of plot orientation along the main environmental gradient, to examine how the selection of plot orientation (when elongated plots are used) influences the number of species collected. In total, 1041 plant species were recorded from the study plots. A significantly higher species richness was recorded by the random arrangement of 4 subplots within each plot in comparison to the ‘rectangle’ and ‘square’ shapes. Although the rectangular shape captured a significant larger number of species than squared ones, plot orientation along the main environmental gradient did not show a systematic effect on the number of recorded species. We concluded that the choice of whether or not using elongated (rectangular) versus squared plots should dependent upon the objectives of the specific survey with squared plots being more suitable for assessing species composition of more homogeneous vegetation units and rectangular plots being more suited for recording more species in the pooled sample of a large area.  相似文献   

4.
A standardized rapid inventory method providing information on both tree species diversity and aboveground carbon stocks in tropical forests will be an important tool for evaluating efforts to conserve biodiversity and to estimate the carbon emissions that result from deforestation and degradation (REDD). Herein, we contrast five common plot methods differing in shape, size, and effort requirements to estimate tree diversity and aboveground tree biomass (AGB). We simulated the methods across six Neotropical forest sites that represent a broad gradient in forest structure, tree species richness, and floristic composition, and we assessed the relative performance of methods by evaluating the bias and precision of their estimates of AGB and tree diversity. For a given sample of forest area, a ‘several small’ (< 1 ha) sampling strategy led to a smaller coefficient of variation (CV) in the estimate of AGB than a ‘few large’ one. The effort (person‐days) required to achieve an accurate AGB estimate (< 10% CV), however, was greater for the smallest plots (0.1 ha) than for a compromise approach using 0.5 ha modified Gentry plots, which proved to be the most efficient method to estimate AGB across all forest types. Gentry plots were also the most efficient at providing accurate estimates of tree diversity (< 10% CV of Hill number). We recommend the use of the 0.5 ha modified Gentry plot method in future rapid inventories, and we discuss a set of criteria that should inform any choice of inventory method.  相似文献   

5.
The relationship between biodiversity and productivity has stimulated an increasing body of research over the past decades, and this topic still occupies a central place in ecology. While most studies have focused on biomass production in quadrats or plots, few have investigated the scale‐dependent relationship from an individual plant perspective. We present an analysis of the effects of biodiversity (species diversity and functional diversity) on individual tree growth with a data set of 16,060 growth records from a 30‐ha temperate forest plot using spatially explicit individual tree‐based methods. A significant relationship between species diversity and tree growth was found at the individual tree level in our study. The magnitude and direction of biodiversity effects varies with the spatial scale. We found positive effects of species diversity on tree growth at scales exceeding 9 m. Individual tree growth rates increased when there was a greater diversity of species in the neighborhood of the focal tree, which provides evidence of a niche complementarity effect. At small scales (3–5 m), species diversity had negative effects on tree growth, suggesting that competition is more prevalent than complementarity or facilitation in these close neighborhoods. The results also revealed many confounding factors which influence tree growth, such as elevation and available sun light. We conclude that the use of individual tree‐based methods may lead to a better understanding of the biodiversity‐productivity relationship in forest communities.  相似文献   

6.
7.
Density‐dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scale‐dependent differentiation. In this study, we explore the elevational variation in density dependence. Three 1‐ha permanent plots were established at low and high elevations in the Heishiding subtropical forest, southern China. Using data from 1200 1 m2 seedling quadrats, comprising of 200 1 m2 quadrats located in each 1‐ha plot, we examined the variation in density dependence between elevations using a generalized linear mixed model with crossed random effects. A greenhouse experiment also investigated the potential effects of the soil biota on density‐dependent differentiation. Our results demonstrated that density‐dependent seedling mortality can vary between elevations in subtropical forests. Species found at a lower elevation suffered stronger negative density dependence than those found at a higher elevation. The greenhouse experiment indicated that two species that commonly occur at both elevations suffered more from soilborne pathogens during seed germination and seedling growth when they grew at the lower elevation, which implied that soil pathogens may play a crucial role in density‐dependent spatial variation.  相似文献   

8.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

9.
Plot shape effects on plant species diversity measurements   总被引:1,自引:0,他引:1  
Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies? Location: Grasslands, shrublands and forests in the Mediterranean‐climate region of California, USA. Methods: We compared three 0.1‐ha sampling designs that differed in the shape and dispersion of 1‐m2 and 100‐m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400‐m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire. Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1‐ or 100‐m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self‐similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale. Conclusions: At the 0.1‐ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean‐climate vegetation types studied here, the primary reason that 1:4 rectangles do not sample greater species richness than squares is because species turnover varies along complex environmental gradients that are both parallel and perpendicular to the long axis of rectangular plots. Reports in the literature of much greater species richness recorded for highly elongated rectangular strips than for squares of the same area are not likely to be fair comparisons because of the dramatically different periphery/area ratio, which includes a much greater proportion of species that are using both above and below‐ground niche space outside the sample area.  相似文献   

10.
Savannas are highly diverse and dynamic environments that can shift to forest formations due to protection policies. Long‐distance dispersal may shape the genetic structure of these new closed forest formations. We analyzed eight microsatellite loci using a single‐time approach to understand contemporary pollen and effective seed dispersal of the tropical tree, Copaifera langsdorffii Desf. (Fabaceae), occurring in a Brazilian fire‐ and livestock‐protected savanna. We sampled all adult trees found within a 10.24 ha permanent plot, young trees within a subplot of 1.44 ha and open‐pollinated seeds. We detected a very high level of genetic diversity among the three generations in the studied plot. Parentage analysis revealed high pollen immigration rate (0.64) and a mean contemporary pollen dispersal distance of 74 m. In addition, half‐sib production was 1.8 times higher than full‐sibs in significant higher distances, indicating foraging activity preference for different trees at long distances. There was a significant and negative correlation between diameter at breast height (DBH) of the pollen donor with the number of seeds (r = ?0.640, P‐value = 0.032), suggesting that pollen donor trees with a higher DBH produce less seeds. The mean distance of realized seed dispersal (recruitment kernel) was 135 m due to the large home range dispersers (birds and mammals) in the area. The small magnitude of spatial genetic structure found in young trees may be a consequence of overlapping seed shadows and increased tree density. Our results show the positive side of closed canopy expansion, where animal activities regarding pollination and seed dispersal are extremely high.  相似文献   

11.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   

12.
The effect of the plot shape, number of subplots and their spatial arrangement on the sample variance for spatially explicit point populations is analysed for a simple intensity estimator. We derive the sample variance and covariance for sampling designs involving more than one subplot. Some numerical approximations are also presented. If a clustered point pattern has to be sampled, the best strategy to reduce the sample variance is to consider as many rectangular subplots as possible, for a prescribed total sample area, distributed over a grid. In contrast, if a regular point pattern is to be sampled, then a single circular subplot should be considered. If we assume that the point configuration is Poisson, then we can consider any subplot shape and spatial distribution ensuring no overlapping between the subplots. A case study in forestry is considered to assess the validity of our results.  相似文献   

13.
An investigation of spatial pattern in relatively sparse Pinus ponderosa-P. Jeffreyi stands showed that a simple Poisson model of random distribution described the pattern at 5 to 50 m scales in the denser stands examined when allowance is made for inhibition between nearest neighbors. There is evidence for a clumped distribution in large quadrats for the sparsest stands, which concurs with prior work where a mixed Poisson model was fit to the data. The technique used was innovative in that it involved digitally recording tree locations from high resolution aerial photos, which allowed for the automatic application of several statistical techniques in order to determine how pattern varies with plot density and scale. Point locations were recorded for six 11.3 ha plots in three density regions of a 340 ha study area in northeastern California, USA. The inter-event distance distribution, and one- and two-dimensional power spectra were calculated, and variable quadrat analysis was performed for the data sets. The second order and spectral analyses showed no evidence of a distinctive clumped pattern at any scale, and all analyses showed that the pattern was regular at the scale of the average inter-plant distance in the denser stands. For the sparser stands, the counts in large quadrats did not fit a Poisson distribution, but were better fit by a mixed Poisson model describing aggregated pattern.  相似文献   

14.
Patch dynamics, tree injury and mortality, and coarse woody detritus were quantified to examine the ecological impacts of Hurricane Fran on an oak-hickory-pine forest near Chapel Hill, NC. Data from long-term vegetation plots (1990–1997) and aerial photographs (1998) indicated that this 1996 storm caused patchy disturbance of intermediate severity (10–50% tree mortality; Woods, J Ecol 92:464–476, 2004). The area in large disturbance patches (>0.1 ha) increased from <1% to approximately 4% of the forested landscape. Of the forty-two 0.1-ha plots that were studied, 23 were damaged by the storm and lost 1–66% of their original live basal area. Although the remaining 19 plots gained basal area (1–15% increase), across all 42 stands basal area decreased by 17% because of storm impacts. Overall mortality of trees >10 cm dbh was 18%. The basal area of standing dead trees after the storm was 0.9 m2/ha, which was not substantially different from the original value of 0.7 m2/ha. In contrast, the volume and mass of fallen dead trees after the storm (129 m3/ha; 55 Mg/ha) were 6.1 and 7.9 times greater than the original levels (21 m3/ha; 7 Mg/ha), respectively. Uprooting was the most frequent type of damage, and it increased with tree size. However, two other forms of injury, severe canopy breakage and toppling by other trees, decreased with increasing tree size. Two dominant oak species of intermediate shade-tolerance suffered the largest losses in basal area (30–41% lost). Before the storm they comprised almost half of the total basal area in a forest of 13% shade-tolerant, 69% intermediate, and 18% shade-intolerant trees. Recovery is expected to differ with respect to vegetation (e.g., species composition and diversity) and ecosystem properties (e.g., biomass, detritus mass, and carbon balance). Vegetation may not revert to its former composition; however, reversion of biomass, detritus mass, and carbon balance to pre-storm conditions is projected to occur within a few decades. For example, the net change in ecosystem carbon balance may initially be negative from losses to decomposition, but it is expected to be positive within a decade after the storm. Repeated intermediate-disturbance events of this nature would likely have cumulative effects, particularly on vegetation properties.  相似文献   

15.
Two 1 ha plots of a Southern Brazilian subtropical riverine forest, subject to different frequency and duration of floods, were compared to detect the differences in physiognomic structure, tree community composition, richness and diversity. Each plot was made up of 100 contiguous 10×10 m subplots, where 3451 trees with pbh 15 cm were measured and identified. The survey observed 30 tree species, in the frequently flooded plot and 48 in the occasionally flooded plot. A detailed topographical and soil survey was carried out in both plots and indicated that the levels of organic matter and most mineral nutrients were higher in the frequently flooded stand. The forest understory was denser in the occasionally flooded stand which also showed taller emergent trees. Multivariate ordination and grouping techniques showed that the species’ abundance distribution was strongly related to the topographical variation. There was a clear pattern of species turnover according to topographic position, indicating that tree species developed different abilities to survive flooding events. As a result, the two plots also differed in their tree frequency per species regeneration, vertical distribution and dispersion groups. Both species richness and diversity decreased with increasing flood frequency, also showing a patchy distribution within both stands. At a local scale, flooding regime is regulating the spatial variation of α-diversity by forming different seral stages of predictable species composition. Compared to regularly flooded riverine and floodplain forests, riverine forests, with unpredictable flooding regimes, may show higher diversity at a local scale and more abundant opportunistic species of high environmental plasticity.  相似文献   

16.
Insect parasitism patterns are influenced by vegetation structure and landscape complexity. Our objective was to examine the effects of vegetation structure and landscape complexity on parasitism based on direct measurements of structure and diversity indices as well as on metrics based on remote sensing using Quickbird images. We collected 2266 lepidopteran larvae and pupae, including different families and habits, to estimate parasitism, and recorded vegetation characteristics in five 100-m2 transects and 18 1 ha-plots in the dry Chaco, Northwest Argentina. We calculated landscape metrics and semivariograms in the plots from the image. The plots represented four “complexity groups”: agricultural, riparian/hedgerow, bare ground, and forest plots. Mean parasitism in the study sites was 10.7% (min: 0%, max: 23%). Parasitism was highest in agricultural plots, lowest in forest plots, and intermediate in riparian/hedgerow and bare ground plots. The landscape model explained parasitism more than the vegetation model. The landscape final model included Normalized Difference Vegetation Index (NDVI) Range, a measure of landscape heterogeneity, and Mean Shape Index, a measure of patch shape irregularity, and their interaction. The vegetation model included basal area and the Coefficient of Variation of tree density among transects, a measure of tree spatial distribution within a plot. Our results agree with previous studies that found higher parasitism in agricultural vs. non-agricultural environments in the subtropics, while riparian/hedgerow plots were important for conserving parasitism, as reported for temperate environments. We showed that under-explored tools such as the semivariogram and satellite band combinations were useful for the assessment of parasitism and that studying vegetation and landscape complexity simultaneously can help us examine mechanisms in detail. The identified variables related to high parasitism should be used for image classifications with a functional approach.  相似文献   

17.
Question: Is there a relationship between size and death in the long‐lived, deep‐rooted tree, Acacia erioloba, in a semi‐arid savanna? What is the size‐class distribution of A. erioloba mortality? Does the mortality distribution differ from total tree size distribution? Does A. erioloba mortality distribution match the mortality distributions recorded thus far in other environments? Location: Dronfield Ranch, near Kimberley, Kalahari, South Africa. Methods: A combination of aerial photographs and a satellite image covering 61 year was used to provide long‐term spatial data on mortality. We used aerial photographs of the study area from 1940, 1964, 1984, 1993 and a satellite image from 2001 to follow three plots covering 510 ha. We were able to identify and individually follow ca. 3000 individual trees from 1940 till 2001. Results: The total number of trees increased over time. No relationship between total number of trees and mean tree size was detected. There were no trends over time in total number of deaths per plot or in size distributions of dead trees. Kolmogorov‐Smirnov tests showed no differences in size class distributions for living trees through time. The size distribution of dead trees was significantly different from the size distribution of all trees present on the plots. Overall, the number of dead trees was low in small size classes, reached a peak value when canopy area was 20 ‐ 30 m2, and declined in larger size‐classes. Mortality as a ratio of dead vs. total trees peaked at intermediate canopy sizes too. Conclusion: A. erioloba mortality was size‐dependent, peaking at intermediate sizes. The mortality distribution differs from all other tree mortality distributions recorded thus far. We suggest that a possible mechanism for this unusual mortality distribution is intraspecific competition for water in this semi‐arid environment.  相似文献   

18.
徐武美  宋彩云  李巧明 《生态学报》2015,35(23):7756-7762
生态位理论认为,养分空间异质性分布会减少种间竞争排斥而有助于物种共存;而中性理论则认为群落树种呈独立于环境特征的随机分布。为研究土壤养分异质性与乔木树种多样性的联系,在西双版纳热带季节雨林随机设置了16个1 hm~2样方,调查了各样方乔木树种多样性,计算了各样方土壤有效氮(AN)、有效磷(EP)、有效钾(EK)、有机质(OM)、p H、总氮(TN)、总磷(TP)、总钾(TK)的变异系数以代表各样方土壤养分空间异质性分布的相对水平。Pearson相关分析表明,TK变异系数与乔木树种丰富度、Shannon-wiener指数呈显著正相关(P0.05),表明该区域不同植物可能在钾资源的利用上存在明显的生态位分化,钾的异质性有助于树种共存;OM、AN变异系数与Pielou均匀度指数呈明显正相关(P0.1),在一定程度上说明了这些养分的空间异质性缓解了种间竞争压力,树种多度分布相对均匀,有助于树种共存。除TK外,其它土壤指标的变异系数与乔木树种多样性的正相关性均不显著(P0.05),表明这些养分的空间异质性分布对乔木树种多样性的影响相对较小,中性或其它生态学过程可能掩盖了这些养分的空间异质性分布对乔木树种多样性的影响。这说明,土壤养分空间异质性可能在一定程度上促进了树种共存,但同时应当重视中性过程等在西双版纳热带雨林群落构建中的作用。  相似文献   

19.
Forest structural reference conditions are widely used to understand how ecosystems have been altered and guide restoration and management objectives. We used six stem‐mapped permanent plots established in the early twentieth century to provide precise structural reference conditions for ponderosa pine forests of northern Arizona prior to Euro‐American settlement. Reference conditions for these plots in 1873–1874 included the following historical attributes: tree densities of 45–127 trees/ha, mean tree diameter at breast height (dbh) of 43.8 cm with a corresponding quadratic mean diameter range of 41.5–51.3 cm, and a stand basal area of 9.2–18.0 m2/ha. The reconstructed diameter distributions (for live ponderosa pine trees with dbh ≥9.14 cm) prior to fire exclusion varied in shape but generally displayed an irregular unimodal distribution. We suggest that management objectives for the structural restoration of ponderosa pine forests of northern Arizona emphasize: (1) conservation and retention of all pre‐settlement (>130 years) trees; (2) reduction of tree densities with a restoration objective ranging between 50 and 150 trees/ha having a large‐tree component between 25 and 50% of the total trees per hectare, respectively; (3) manipulation of the diameter distribution to achieve a unimodal or irregular, uneven‐aged shape (possibly targeting a balanced, uneven‐aged shape on cinder soil types) through the use of harvest and thinning practices that mimic gap disturbances (i.e., individual tree selection system); and (4) retention of 3–11 snags and logs per hectare resulting from natural mortality.  相似文献   

20.
Conspecific effects of neighbours on small-tree survival may have a role in tree population dynamics and community composition of tropical forests. This notion was tested with data from two 4-ha plots in lowland forest at Danum, Sabah (Borneo), for a 21-year interval (censuses at 1986, 1996, 2001, 2007). Species with ≥45 focal trees 10 to <100 cm stem girth per plot in 1986 were selected. Logistic regressions fitted mean focal tree size and mean inverse-distance-weighted basal area abundance of neighbours (within 20 m), for the periods over which each focus tree was alive. Coefficients of variation of neighbourhood basal area abundance, both spatially and temporally, quantified the changing environment of each focus tree. Fits were critically and individually evaluated, with corrections for spatial autocorrelation. Conspecific effects at Danum was generally very weak or non-existent: species’ mortality rates varied also across plots. The main reasons appear to be that (1) species were not dense enough to interact despite frequent although weak spatial aggregation, and their neighbourhoods were highly differing in species composition; and (2) these neighbourhoods were highly variable temporally, meaning that focus trees experienced stochastically fluctuating neighbourhood environments. Only one species, Dimorphocalyx muricatus, showed strong conspecific effects (varying between plots) which can be explained by its distinct ecology. This understorey species is highly aggregated on ridges and is drought-tolerant. That this functionally and habitat-specialized species, has implied intraspecific density-dependent feedback in its dynamics is a remarkable indication of the overall processes maintaining stability of the Danum forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号