首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate correlative relationships between structural change and thermodynamic stability in proteins, a series of mutant human lysozymes modified at two buried positions (Ile56 and Ile59) were examined. Their thermodynamic parameters of denaturation and crystal structures were studied by calorimetry and X-ray crystallography. The mutants at positions 56 and 59 exhibited different responses to a series of amino acid substitutions. The changes in stability due to substitutions showed a linear correlation with changes in hydrophobicity of substituted residues, having different slopes at each mutation site. However, the stability of each mutant was found to be represented by a unique equation involving physical properties calculated from mutant structures. By fitting present and previous stability data for mutant human lysozymes substituted at various positions to the equation, the magnitudes of the hydrophobicity of a carbon atom and the hydrophobicity of nitrogen and neutral oxygen atoms were found to be 0.178 and -0.013 kJ/mol.A(2), respectively. It was also found that the contribution of a hydrogen bond with a length of 3.0 A to protein stability was 5.1 kJ/mol and the entropy loss of newly introduction of a water molecules was 7.8 kJ/mol.  相似文献   

2.
To further examine the structural and thermodynamic basis of hydrophobic stabilization in proteins, all of the bulky non-polar residues that are buried or largely buried within the core of T4 lysozyme were substituted with alanine. In 25 cases, including eight reported previously, it was possible to determine the crystal structures of the variants. The structures of four variants with double substitutions were also determined. In the majority of cases the "large-to-small" substitutions lead to internal cavities. In other cases declivities or channels open to the surface were formed. In some cases the structural changes were minimal (mainchain shifts < or = 0.3 A); in other cases mainchain atoms moved up to 2 A. In the case of Ile 29 --> Ala the structure collapsed to such a degree that the volume of the putative cavity was zero. Crystallographic analysis suggests that the occupancy of the engineered cavities by solvent is usually low. The mutants Val 149 --> Ala (V149A) and Met 6 --> Ala (M6A), however, are exceptions and have, respectively, one and two well-ordered water molecules within the cavity. The Val 149 --> Ala substitution allows the solvent molecule to hydrogen bond to polar atoms that are occluded in the wild-type molecule. Similarly, the replacement of Met 6 with alanine allows the two solvent molecules to hydrogen bond to each other and to polar atoms on the protein. Except for Val 149 --> Ala the loss of stability of all the cavity mutants can be rationalized as a combination of two terms. The first is a constant for a given class of substitution (e.g., -2.1 kcal/mol for all Leu --> Ala substitutions) and can be considered as the difference between the free energy of transfer of leucine and alanine from solvent to the core of the protein. The second term can be considered as the energy cost of forming the cavity and is consistent with a numerical value of 22 cal mol(-1) A(-3). Physically, this term is due to the loss of van der Waal''s interactions between the bulky sidechain that is removed and the atoms that form the wall of the cavity. The overall results are consistent with the prior rationalization of Leu --> Ala mutants in T4 lysozyme by Eriksson et al. (Eriksson et al., 1992, Science 255:178-183).  相似文献   

3.
Several variants of Saccharomyces cerevisiae triosephosphate isomerase (yTIM) were studied to determine how mutations of conserved and non-conserved Cys residues affect the enzyme. Wild-type yTIM has two buried free cysteines: Cys 41 (non-conserved) and the invariant Cys 126. Single-site mutants, containing substitutions of these cysteines with Ala, Val, or Ser (the three most conservative changes for a buried Cys, according to substitution matrices), were examined for stability and enzymatic activity. Neither of the Cys residues was found to be essential for enzyme catalysis. Determination of the global stability of the mutants indicated that, regardless of which Cys was substituted, individual Cys→Ala and Cys→Val mutations, as well as the C41S substitution, all decrease the unfolding free energy of the dimeric protein by less than 23 kJ mol(-1) (at 37 °C, pH 7.4), as compared to the wild-type enzyme. In contrast, a substantially larger destabilization (37 kJ mol(-1)) was found in the C126S mutant. These results suggest that, with the exception of C126S, all of these mutations can be regarded as neutral (i.e., mutations that do not impair the reproductive success of the organism). Accordingly, Cys 126 has remained invariant across evolution because its neutral substitutions by Ala or Val would require a highly unlikely, concerted double mutation at any of the Cys codons. Furthermore, detrimental effects to a cell expressing the C126S TIM mutant more likely arise from the high unfolding rate of this enzyme.  相似文献   

4.
Inter-residue interactions play an important role to the folding and stability of protein molecules. In this work, we analyze the role of medium- and long-range interactions to the stability of T4 lysozyme mutants. We found that, in buried mutations, the increase in long-range contacts upon mutations destabilizes the protein, whereas, in surface mutations, the increase in long-range contacts increases the stability, indicating the importance of surrounding polar residues to the stability of surface mutations. Further, the increase in medium-range contacts decreases the stability of buried and surface mutations and a direct relationship is observed between the increase of medium-range contacts and increase in stability for partially buried/exposed mutations. Moreover, the relationship between amino acid properties and stability of T4 lysozyme mutants at positions Ile3, Phe53, and Leu99 showed that the effect of medium- and long-range contacts is less for buried mutations and the inter-residue contacts have significant correlation with the stability of partially buried mutations.  相似文献   

5.
We examined folding and secretion of human lysozyme using four mutants each lacking two cysteines expressed in a yeast secretion system. Our results have revealed that the formation of the disulfide bond Cys6/Cys128 in human lysozyme is a prerequisite for correct folding in vivo in yeast. Substitution of Ala for Cys77 and Cys95 gave eight-fold greater secretion of a molecule with almost the same specific activity as that of the native enzyme. Substitutions of the other cysteines gave molecules that were secreted at a lower rate and had lower specific activities than the native enzyme. These are the first findings that the individual disulfide bonds of human lysozyme have different functions in folding and secretion in vivo.  相似文献   

6.
Four species of 1SS-varinats of lysozyme were almost unstructured in water, judged from their near-UV CD and (1) H-(15) N-HSQC spectra. Some preferential structure might exist in such a disordered state, but the population of molecules in such a conformation must have been too small to be detected by spectroscopic methods. Indeed, our previous study showed that the addition of 30% glycerol induced the unstructured 2SS-variant of lysozyme to form a native-like structure. To extend this method to more disordered proteins, we attempted to detect some preferential structure latent in unstructured 1SS-variants by the glycerol-enhanced detection. Only in one molecular species of the four 1SS-variants, 1SS[6-127] containing a single disulfide bridge of Cys6-Cys127, a preferential structure was found in the presence of 50% glycerol. It was detected by near-UV CD measurements and the H/D exchange method combined with the NMR spectroscopy. The glycerol-induced structure in 1SS[6-127] was not localized only in the vicinity of Cys6-Cys127, and largely protected regions distributed themselves among A-, B-, and C-helices and Ile55 and Leu56. It was similar to the glycerol-induced structure in 2SS[6-127, 64-80] containing two disulfide bridges of Cys6-Cys127 and Cys64-Cys80, although the former was less rigid than the latter. The role of A-helix (residues 4-15) is proposed as an origin of excellent potential of Cys6-Cys127 for inducing a tertiary structure in the α-domain.  相似文献   

7.
To further examine the contribution of hydrogen bonds to the conformational stability of the human lysozyme, six Ser to Ala mutants were constructed. The thermodynamic parameters for denaturation of these six Ser mutant proteins were investigated by differential scanning calorimetry (DSC), and the crystal structures were determined by X-ray analysis. The denaturation Gibbs energy (DeltaG) of the Ser mutant proteins was changed from 2.0 to -5.7 kJ/mol, compared to that of the wild-type protein. With an analysis in which some factors that affected the stability due to mutation were considered, the contribution of hydrogen bonds to the stability (Delta DeltaGHB) was extracted on the basis of the structures of the mutant proteins. The results showed that hydrogen bonds between protein atoms and between a protein atom and a water bound with the protein molecule favorably contribute to the protein stability. The net contribution of one intramolecular hydrogen bond to protein stability (DeltaGHB) was 8.9 +/- 2.6 kJ/mol on average. However, the contribution to the protein stability of hydrogen bonds between a protein atom and a bound water molecule was smaller than that for a bond between protein atoms.  相似文献   

8.
In globular proteins, there are intermolecular hydrogen bonds between protein and water molecules, and between water molecules, which are bound with the proteins, in addition to intramolecular hydrogen bonds. To estimate the contribution of these hydrogen bonds to the conformational stability of a protein, the thermodynamic parameters for denaturation and the crystal structures of five Thr to Val and five Thr to Ala mutant human lysozymes were determined. The denaturation Gibbs energy (DeltaG) of Thr to Val and Thr to Ala mutant proteins was changed from 4.0 to -5.6 kJ/mol and from 1.6 to -6.3 kJ/mol, respectively, compared with that of the wild-type protein. The contribution of hydrogen bonds to the stability (DeltaDeltaG(HB)) of the Thr and other mutant human lysozymes previously reported was extracted from the observed stability changes (DeltaDeltaG) with correction for changes in hydrophobicity and side chain conformational entropy between the wild-type and mutant structures. The estimation of the DeltaDeltaG(HB) values of all mutant proteins after removal of hydrogen bonds, including protein-water hydrogen bonds, indicates a favorable contribution of the intra- and intermolecular hydrogen bonds to the protein stability. The net contribution of an intramolecular hydrogen bond (DeltaG(HB[pp])), an intermolecular one between protein and ordered water molecules (DeltaG(HB[pw])), and an intermolecular one between ordered water molecules (DeltaG(HB[ww])) could be estimated to be 8. 5, 5.2, and 5.0 kJ/mol, respectively, for a 3 A long hydrogen bond. This result shows the different contributions to protein stability of intra- and intermolecular hydrogen bonds. The entropic cost due to the introduction of a water molecule (DeltaG(H)()2(O)) could be also estimated to be about 8 kJ/mol.  相似文献   

9.
The 22 members of the mouse/human fibroblast growth factor (FGF) family of proteins contain a conserved cysteine residue at position 83 (numbering scheme of the 140-residue form of FGF-1). Sequence and structure information suggests that this position is a free cysteine in 16 members and participates as a half-cystine in at least 3 (and perhaps as many as 6) other members. While a structural role as a half-cystine provides a stability basis for possible selective pressure, it is less clear why this residue is conserved as a free cysteine (although free buried thiols can limit protein functional half-life). To probe the structural role of the free cysteine at position 83 in FGF-1, we constructed Ala, Ser, Thr, Val, and Ile mutations and determined their effects on structure and stability. These results show that position 83 in FGF-1 is thermodynamically optimized to accept a free cysteine. A second cysteine mutation was introduced into wild-type FGF-1 at adjacent position Ala66, which is known to participate as a half-cystine with position 83 in FGF-8, FGF-19, and FGF-23. Results show that, unlike position 83, a free cysteine at position 66 destabilizes FGF-1; however, upon oxidation, a near-optimal disulfide bond is formed between Cys66 and Cys83, resulting in ∼ 14 kJ/mol of increased thermostability. Thus, while the conserved free cysteine at position 83 in the majority of the FGF proteins may have a principal role in limiting functional half-life, evidence suggests that it is a vestigial half-cystine.  相似文献   

10.
Dürr E  Jelesarov I 《Biochemistry》2000,39(15):4472-4482
Protein stability in vitro can be influenced either by introduction of mutations or by changes in the chemical composition of the solvent. Recently, we have characterized the thermodynamic stability and the rate of folding of the engineered dimeric leucine zipper A(2), which has a strengthened hydrophobic core [Dürr, E., Jelesarov, I., and Bosshard, H. R. (1999) Biochemistry 38, 870-880]. Here we report on the energetic consequences of a cavity introduced by Leu/Ala substitution at the tightly packed dimeric interface and how addition of 30% glycerol affects the folding thermodynamics of A(2) and the cavity mutants. Folding could be described by a two-state transition from two unfolded monomers to a coiled coil dimer. Removal of six methylene groups by Leu/Ala substitutions destabilized the dimeric coiled coil by 25 kJ mol(-1) at pH 3.5 and 25 degrees C in aqueous buffer. Destabilization was purely entropic at around room temperature and became increasingly enthalpic at elevated temperatures. Mutations were accompanied by a decrease of the unfolding heat capacity by 0.5 kJ K(-1) mol(-1). Addition of 30% glycerol increased the free energy of folding of A(2) and the cavity mutants by 5-10 kJ mol(-1) and lowered the unfolding heat capacity by 25% for A(2) and by 50% for the Leu/Ala mutants. The origin of the stabilizing effect of glycerol varied with temperature. Stabilization of the parent leucine zipper A(2) was enthalpic with an unfavorable entropic component between 0 and 100 degrees C. In the case of cavity mutants, glycerol induced enthalpic stabilization below 50 degrees C and entropic stabilization above 50 degrees C. The effect of glycerol could not be accounted for solely by the enthalpy and entropy of transfer or protein surface from water to glycerol/water mixture. We propose that in the presence of glycerol the folded coiled coil dimer is better packed and displays less intramolecular fluctuations, leading to enhanced enthalpic interactions and to an increase of the entropy of folding. This work demonstrates that mutational and solvent effects on protein stability can be thermodynamically complex and that it may not be sufficient to only analyze changes of enthalpy and entropy at the unfolding temperature (T(m)) to understand the mechanisms of protein stabilization.  相似文献   

11.
The hydration of CO2 catalyzed by human carbonic anhydrase II (HCA II) is accompanied by proton transfer from the zinc-bound water of the enzyme to solution. We have replaced the proton shuttling residue His 64 with Ala and placed cysteine residues within the active-site cavity by mutating sites Trp 5, Asn 62, Ile 91, and Phe 131. These mutants were modified at the single inserted cysteine with imidazole analogs to introduce new potential shuttle groups. Catalysis by these modified mutants was determined by stopped-flow and 18O-exchange methods. Specificity in proton transfer was demonstrated; only modifications of the Cys 131-containing mutant showed enhancement in the proton transfer step of catalysis compared with unmodified Cys 131-containing mutant. Modifications at other sites resulted in up to 3-fold enhancement in rates of CO2 hydration, with apparent second-order rate constants near 350 microM(-1) s(-1). These are among the largest values of kcat/Km observed for a carbonic anhydrase.  相似文献   

12.
Packing interactions in bacteriophage T4 lysozyme were explored by determining the structural and thermodynamic effects of substitutions for Ala98 and neighboring residues. Ala98 is buried in the core of T4 lysozyme in the interface between two alpha-helices. The Ala98 to Val (A98V) replacement is a temperature-sensitive lesion that lowers the denaturation temperature of the protein by 15 degrees C (pH 3.0, delta delta G = -4.9 kcal/mol) and causes atoms within the two helices to move apart by up to 0.7 A. Additional structural shifts also occur throughout the C-terminal domain. In an attempt to compensate for the A98V replacement, substitutions were made for Val149 and Thr152, which make contact with residue 98. Site-directed mutagenesis was used to construct the multiple mutants A98V/T152S, A98V/V149C/T152S and the control mutants T152S, V149C and A98V/V149I/T152S. These proteins were crystallized, and their high-resolution X-ray crystal structures were determined. None of the second-site substitutions completely alleviates the destabilization or the structural changes caused by A98V. The changes in stability caused by the different mutations are not additive, reflecting both direct interactions between the sites and structural differences among the mutants. As an example, when Thr152 in wild-type lysozyme is replaced with serine, the protein is destabilized by 2.6 kcal/mol. Except for a small movement of Val94 toward the cavity created by removal of the methyl group, the structure of the T152S mutant is very similar to wild-type T4 lysozyme. In contrast, the same Thr152 to Ser replacement in the A98V background causes almost no change in stability. Although the structure of A98V/T152S remains similar to A98V, the combination of T152S with A98V allows relaxation of some of the strain introduced by the Ala98 to Val replacement. These studies show that removal of methyl groups by mutation can be stabilizing (Val98----Ala), neutral (Thr152----Ser in A98V) or destabilizing (Val149----Cys, Thr152----Ser). Such diverse thermodynamic effects are not accounted for by changes in buried surface area or free energies of transfer of wild-type and mutant side-chains. In general, the changes in protein stability caused by a mutation depend not only on changes in the free energy of transfer associated with the substitution, but also on the structural context within which the mutation occurs and on the ability of the surrounding structure to relax in response to the substitution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
To minutely understand the effect of foreign N-terminal residues on the conformational stability of human lysozyme, five mutant proteins were constructed: two had Met or Ala in place of the N-terminal Lys residue (K1M and K1A, respectively), and others had one additional residue, Met, Gly or Pro, to the N-terminal Lys residue (Met(-1), Gly(-1) and Pro(-1), respectively). The thermodynamic parameters for denaturation of these mutant proteins were examined by differential scanning calorimetry and were compared with that of the wild-type protein. Three mutants with the extra residue were significantly destabilized: the changes in unfolding Gibbs energy (DeltaDeltaG) were -9.1 to -12.2 kJ.mol-1. However, the stability of two single substitutions at the N-terminal slightly decreased; the DeltaDeltaG values were only -0.5 to -2.5 kJ.mol-1. The results indicate that human lysozyme is destabilized by an expanded N-terminal residue. The crystal structural analyses of K1M, K1A and Gly(-1) revealed that the introduction of a residue at the N-terminal of human lysozyme caused the destruction of hydrogen bond networks with ordered water molecules, resulting in the destabilization of the protein.  相似文献   

14.
Takano K  Yamagata Y  Yutani K 《Biochemistry》2001,40(15):4853-4858
It has been generally believed that polar residues are usually located on the surface of protein structures. However, there are many polar groups in the interior of the structures in reality. To evaluate the contribution of such buried polar groups to the conformational stability of a protein, nonpolar to polar mutations (L8T, A9S, A32S, I56T, I59T, I59S, A92S, V93T, A96S, V99T, and V100T) in the interior of a human lysozyme were examined. The thermodynamic parameters for denaturation were determined using a differential scanning calorimeter, and the crystal structures were analyzed by X-ray crystallography. If a polar group had a heavy energy cost to be buried, a mutant protein would be remarkably destabilized. However, the stability (Delta G) of the Ala to Ser and Val to Thr mutant human lysozymes was comparable to that of the wild-type protein, suggesting a low-energy penalty of buried polar groups. The structural analysis showed that all polar side chains introduced in the mutant proteins were able to find their hydrogen bond partners, which are ubiquitous in protein structures. The empirical structure-based calculation of stability change (Delta Delta G) [Takano et al. (1999) Biochemistry 38, 12698--12708] revealed that the mutant proteins decreased the hydrophobic effect contributing to the stability (Delta G(HP)), but this destabilization was recovered by the hydrogen bonds newly introduced. The present study shows the favorable contribution of polar groups with hydrogen bonds in the interior of protein molecules to the conformational stability.  相似文献   

15.
Takano K  Yamagata Y  Yutani K 《Proteins》2001,45(3):274-280
Our previous study of six non-Gly to Gly/Ala mutant human lysozymes in a left-handed helical region showed that only one non-Gly residue at a rigid site had unfavorable strain energy as compared with Gly at the same position (Takano et al., Proteins 2001; 44:233-243). To further examine the role of left-handed residues in the conformational stability of a protein, we constructed ten Gly to Ala mutant human lysozymes. Most Gly residues in human lysozyme are located in the left-handed helix region. The thermodynamic parameters for denaturation and crystal structures were determined by differential scanning calorimetry and X-ray analysis, respectively. The difference in denaturation Gibbs energy (DeltaDeltaG) for the ten Gly to Ala mutants ranged from + 1.9 to -7.5 kJ/mol, indicating that the effect of the mutation depends on the environment of the residue. We confirm that Gly in a left-handed region is more favorable at rigid sites than non-Gly, but there is little difference in energetic cost between Gly and non-Gly at flexible sites. The present results indicate that dihedral angles in the backbone conformation and also the flexibility at the position should be considered for analyses of protein stability, and protein structural determination, prediction, and design.  相似文献   

16.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

17.
Pace CN 《Biochemistry》2001,40(2):310-313
On the basis of studies of Asn to Ala mutants, the gain in stability from burying amide groups that are hydrogen bonded to peptide groups is 80 cal/(mol A(3)). On the basis of similar studies of Leu to Ala and Ile to Val mutants, the gain in stability from burying -CH(2)- groups is 50 cal/(mol A(3)). Thus, the burial of an amide group contributes more to protein stability than the burial of an equivalent volume of -CH(2)- groups. Applying these results to folded proteins leads to the surprising conclusion that peptide group burial makes a larger contribution to protein stability than nonpolar side chain burial. Several studies have shown that the desolvation penalty for burying peptide groups is considerably smaller than generally thought. This suggests that the hydrogen bonding and van der Waals interactions of peptide groups in the tightly packed interior of folded protein are more favorable than similar interactions with water in the unfolded protein.  相似文献   

18.
A series of 24 mutants was made in the buried core of chicken lysozyme at positions 40, 55, and 91. The midpoint temperature of thermal denaturation transition (Tm) values of these core constructs range from 60.9 to 77.3 degrees C, extending an earlier, more limited investigation on thermostability. The Tm values of variants containing conservative replacements for the wild type (WT) (Thr 40-Ile 55-Ser 91) triplet are linearly correlated with hydrophobicity (r = 0.81) and, to a lesser degree, with combined side-chain volume (r = 0.75). The X-ray structures of the S91A (1.9 A) and I55L/S91T/D101S (1.7 A) mutants are presented. The former amino acid change is found in duck and mammalian lysozymes, and the latter contains the most thermostable core triplet. A network of four conserved, buried water molecules is associated with the core. It is postulated that these water molecules significantly influence the mutational tolerance at the individual triplet positions. The pH dependence of Tm for the S91D mutant was compared with that of WT enzyme. The pKa of S91D is 1.2 units higher in the native than in the denatured state, corresponding to delta delta G298 = 1.7 kcal/mol. This is a low value for charge burial and likely reflects the moderating influence of the buried water molecules or a conformational change. Thermal and chemical denaturation and far UV CD spectroscopy were used to characterize the in vitro properties of I55T. This variant, which buries a hydroxyl group, has similar properties to those of the human amyloidogenic variant I56T.  相似文献   

19.
Mulder FA  Hon B  Muhandiram DR  Dahlquist FW  Kay LE 《Biochemistry》2000,39(41):12614-12622
The Leu99-->Ala mutant of T4 lysozyme contains a large internal cavity in the core of its C-terminal domain that is capable of reversibly binding small hydrophobic compounds. Although the cavity is completely buried, molecules such as benzene or xenon can exchange rapidly in and out. The dynamics of the unliganded protein have been compared to the wild-type protein by measuring the NMR spin relaxation rates of backbone amide and side chain methyl nuclei. Many residues surrounding the cavity were found to be affected by a chemical exchange process with a rate of 1500 +/- 200 s(-1), which is quenched upon addition of saturating amounts of the ligand xenon. The relationship between the structure, dynamics, and energetics of the T4 lysozyme mutant is discussed.  相似文献   

20.
Mansoor SE  McHaourab HS  Farrens DL 《Biochemistry》1999,38(49):16383-16393
We report an investigation of how much protein structural information could be obtained using a site-directed fluorescence labeling (SDFL) strategy. In our experiments, we used 21 consecutive single-cysteine substitution mutants in T4 lysozyme (residues T115-K135), located in a helix-turn-helix motif. The mutants were labeled with the fluorescent probe monobromobimane and subjected to an array of fluorescence measurements. Thermal stability measurements show that introduction of the label is substantially perturbing only when it is located at buried residue sites. At buried sites (solvent surface accessibility of <40 A(2)), the destabilizations are between 3 and 5.5 kcal/mol, whereas at more exposed sites, DeltaDeltaG values of < or = 1.5 kcal/mol are obtained. Of all the fluorescence parameters that were explored (excitation lambda(max), emission lambda(max), fluorescence lifetime, quantum yield, and steady-state anisotropy), the emission lambda(max) and the steady-state anisotropy values most accurately reflect the solvent surface accessibility at each site as calculated from the crystal structure of cysteine-less T4 lysozyme. The parameters we identify allow the classification of each site as buried, partially buried, or exposed. We find that the variations in these parameters as a function of residue number reflect the sequence-specific secondary structure, the determination of which is a key step for modeling a protein of unknown structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号