首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Hypoxia regulates adipocyte metabolism. Hexosamine biosynthesis is implicated in murine 3T3L1 adipocyte differentiation and is a possible underlying mechanism for hypoxia’s effects on adipocyte metabolism.

Methods

Lipid metabolism was studied in human visceral and subcutaneous adipocytes in in vitro hypoxic culture with adipophilic staining, glycerol release, and palmitate oxidation assays. Gene expression and hexosamine biosynthesis activation was studied with QRTPCR, immunofluorescence microscopy, and Western blotting.

Results

Hypoxia inhibits lipogenesis and induces basal lipolysis in visceral and subcutaneous human adipocytes. Hypoxia induces fatty acid oxidation in visceral adipocytes but had no effect on fatty acid oxidation in subcutaneous adipocytes. Hypoxia inhibits hexosamine biosynthesis in adipocytes. Inhibition of hexosamine biosynthesis with azaserine attenuates lipogenesis and induces lipolysis in adipocytes in normoxic conditions, while promotion of hexosamine biosynthesis with glucosamine in hypoxic conditions slightly increases lipogenesis.

Conclusions

Hypoxia’s net effect on human adipocyte lipid metabolism would be expected to impair adipocyte buffering capacity and contribute to systemic lipotoxicity. Our data suggest that hypoxia may mediate its effects on lipogenesis and lipolysis through inhibition of hexosamine biosynthesis. Hexosamine biosynthesis represents a target for manipulation of adipocyte metabolism.  相似文献   

2.
The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARγ, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity.  相似文献   

3.
Adipose tissue plays a major role in regulating lipid and energy homeostasis by storing excess nutrients, releasing energetic substrates through lipolysis, and regulating metabolism of other tissues and organs through endocrine and paracrine signaling. Adipocytes within fat tissues store excess nutrients through increased cell number (hyperplasia), increased cell size (hypertrophy), or both. The differentiation of pre-adipocytes into mature lipid-accumulating adipocytes requires a complex interaction of metabolic pathways that is still incompletely understood. Here, we applied parallel labeling experiments and 13C-metabolic flux analysis to quantify precise metabolic fluxes in proliferating and differentiated 3T3-L1 cells, a widely used model to study adipogenesis. We found that morphological and biomass composition changes in adipocytes were accompanied by significant shifts in metabolic fluxes, encompassing all major metabolic pathways. In contrast to proliferating cells, differentiated adipocytes 1) increased glucose uptake and redirected glucose utilization from lactate production to lipogenesis and energy generation; 2) increased pathway fluxes through glycolysis, oxidative pentose phosphate pathway and citric acid cycle; 3) reduced lactate secretion, resulting in increased ATP generation via oxidative phosphorylation; 4) rewired glutamine metabolism, from glutaminolysis to de novo glutamine synthesis; 5) increased cytosolic NADPH production, driven mostly by increased cytosolic malic enzyme flux; 6) increased production of monounsaturated C16:1; and 7) activated a mitochondrial pyruvate cycle through simultaneous activity of pyruvate carboxylase, malate dehydrogenase and malic enzyme. Taken together, these results quantitatively highlight the complex interplay between pathway fluxes and cell function in adipocytes, and suggest a functional role for metabolic reprogramming in adipose differentiation and lipogenesis.  相似文献   

4.
Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krüppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.  相似文献   

5.
6.
Differentiation of adipocytes and their aggregation to adipose tissue are critical for mammalian growth and development. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play important roles in adipogenesis and lipid metabolism. miR-128-3p may contribute to adipose tissue development according to the previous studies. However, the role of miR-128-3p in the process of preadipocyte differentiation and lipid metabolism is not yet understood. The purpose of this research was to investigate the biological function and molecular mechanism of miR-128-3p in 3T3-L1 cells. In the present study, we found that miR-128-3p was downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-128-3p obstructed the expressions of adipogenic marker genes as well as the lipid droplets accumulation and triglyceride content, suggesting the importance of miR-128-3p for adipogenesis. Moreover, miR-128-3p could lead to the retardation of cell proliferation in 3T3-L1 preadipocytes. Further evidences showed that, as a negative regulator of adipogenesis, miR-128-3p could directly target peroxisome proliferator-activated receptor γ (Pparg) which resulted in the suppression of 3T3-L1 preadipocyte differentiation, and miR-128-3p could also bind with SERTA domain containing 2 (Sertad2) which drove triglyceride hydrolysis and lipolysis. In addition, inhibition of Sertad2 with siRNA displayed the same effects as overexpression of miR-128-3p. Our research demonstrated that miR-128-3p impeded 3T3-L1 adipogenesis by targeting Pparg and Sertad2, resulting in the obstruction of preadipocyte differentiation and promotion of lipolysis. Taken together, this study offers profound insight into the mechanism of miRNA-mediated adipogenesis and lipid metabolism.  相似文献   

7.
We evaluated the effects of dipeptidyl peptidase-IV (DPPIV), and its inhibitor, vildagliptin, on adipogenesis and lipolysis in a pre-adipocyte murine cell line (3T3-L1). The exogenous rDPPIV increased lipid accumulation and PPAR-γ expression, whereas an inhibitor of DPPIV, the anti-diabetic drug vildagliptin, suppresses the stimulatory role of DPPIV on adipogenesis and lipid accumulation, but had no effect on lipolysis. NPY immunoneutralization or NPY Y(2) receptor blockage inhibited DPPIV stimulatory effects on lipid accumulation, collectively, indicating that DPPIV has an adipogenic effect through NPY cleavage and subsequent NPY Y(2) activation. Vildagliptin inhibits PPAR-γ expression and lipid accumulation without changing lipolysis, suggesting that this does not impair the ability of adipose tissue to store triglycerides inside lipid droplets. These data indicate that DPPIV and NPY interact on lipid metabolism to promote adipose tissue depot.  相似文献   

8.
Here we show that gene expression of the nuclear receptor RORα is induced during adipogenesis, with RORα4 being the most abundantly expressed isoform in human and murine adipose tissue. Over-expression of RORα4 in 3T3-L1 cells impairs adipogenesis as shown by the decreased expression of adipogenic markers and lipid accumulation, accompanied by decreased free fatty acid and glucose uptake. By contrast, mouse embryonic fibroblasts from staggerer mice, which carry a mutation in the RORα gene, differentiate more efficiently into mature adipocytes compared to wild-type cells, a phenotype which is reversed by ectopic RORα4 restoration.  相似文献   

9.
10.
Lee MS  Kwun IS  Kim Y 《Genes & nutrition》2008,2(4):327-330
In this study, we investigated the lipolytic effects of eicosapentaenoic acid (EPA) in 3T3-L1 adipocytes. The differentiated 3T3-L1 adipocytes were treated in a serum-free medium with 300 muM of EPA for 3, 6, 12, and 24 h. In comparison with the control, intracellular lipid accumulation was significantly decreased by 24% at 24 h following the addition of EPA (P < 0.05). Under the same experimental conditions, there was an increase of glycerol and free fatty acids (FFAs). The mRNA level of carnitine palmitoyltransferase I-a, a component of the fatty-acid shuttle system involved in the mitochondrial oxidation of long-chain fatty acids, was also significantly elevated by EPA (P < 0.05). However, the expression of peroxisome proliferator-activated receptor-gamma and acetyl-CoA carboxylase (ACC), which are involved in adipogenesis, was significantly down-regulated by EPA (P < 0.05). These results suggest that EPA may modulate lipid metabolism by stimulation of lipolysis, which was associated with induction of lipolytic gene expression and suppression of adipogenic gene expression in 3T3-L1 adipocytes.  相似文献   

11.
Phoenixin-14 (PNX) is a newly discovered peptide produced by proteolytic cleavage of the small integral membrane protein 20 (Smim20). Previous studies showed that PNX is involved in controlling reproduction, pain, anxiety and memory. Furthermore, in humans, PNX positively correlates with BMI suggesting a potential role of PNX in controlling fat accumulation in obesity. Since the influence of PNX on adipose tissue formation has not been so far demonstrated, we investigated the effects of PNX on proliferation and differentiation of preadipocytes using 3T3-L1 and rat primary preadipocytes. We detected Smim20 and Gpr173 mRNA in 3T3-L1 preadipocytes as well as in rat primary preadipocytes. Furthermore, we found that PNX peptide is produced and secreted from 3T3-L1 and rat primary adipocytes. PNX increased 3T3-L1 preadipocytes proliferation and viability. PNX stimulated the expression of adipogenic genes (Pparγ, C/ebpβ and Fabp4) in 3T3-L1 adipocytes. 3T3-L1 preadipocytes differentiated in the presence of PNX had increased lipid content. Stimulation of cell proliferation and differentiation by PNX was also confirmed in rat preadipocytes. PNX failed to induce AKT phosphorylation, however, PNX increased cAMP levels in 3T3-L1 cells. Suppression of Epac signalling attenuated PNX-induced Pparγ expression without affecting cell proliferation. Our data show that PNX stimulates differentiation of 3T3-L1 and rat primary preadipocytes into mature adipocytes via cAMP/Epac-dependent pathway. In conclusion our data shows that phoenixin promotes white adipogenesis, thereby may be involved in controlling body mass regulation.  相似文献   

12.
13.
Regulation of adipocyte differentiation and insulin action with rapamycin   总被引:6,自引:0,他引:6  
Here, we demonstrated that inhibition of mTOR with rapamycin has negative effects on adipocyte differentiation and insulin signaling. Rapamycin significantly reduced expression of most adipocyte marker genes including PPARgamma, adipsin, aP2, ADD1/SREBP1c, and FAS, and decreased intracellular lipid accumulation in 3T3-L1 and 3T3-F442A cells, suggesting that rapamycin would affect both lipogenesis and adipogenesis. Contrary to the previous report that suppressive effect of rapamycin on adipogenesis is limited to the clonal expansion, we revealed that its inhibitory effect persisted throughout the process of adipocyte differentiation. Thus, it is likely that constitutive activation of mTOR might be required for the execution of adipogenic programming. In differentiated 3T3-L1 adipocytes, chronic treatment of rapamycin blunted the phosphorylation of AKT and GSK, which is stimulated by insulin, and reduced insulin-dependent glucose uptake activity. Taken together, these results suggest that rapamycin not only prevents adipocyte differentiation by decrease of adipogenesis and lipogenesis but also downregulates insulin action in adipocytes, implying that mTOR would play important roles in adipogenesis and insulin action.  相似文献   

14.

Background

Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown.

Methods and Findings

We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr−/−Apob 100/100).

Conclusions

Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.  相似文献   

15.

The adipokine Chemerin is reported to regulate adipogenesis and glucose homeostasis in vivo and in 3T3-L1 cells. Our team is focused on the role of Chemerin in metabolism and intramuscular adipocyte differentiation because intramuscular fat is the basic material for the formation of marbling in livestock and poultry meat. In this study, bovine intramuscular mature adipocytes were cultured in medium with Chemerin, and the process of lipolysis of mature adipocytes and the adipogenesis of de-differentiated preadipocytes were investigated. The results showed that Chemerin induced significant lipolytic metabolism in intramuscular mature adipocytes, indicated by increased levels of glycerol, FFA, and up-regulated expression of the lipolysis critical factors HSL, LPL, and leptin. Meanwhile, the expressions of adipogenic key factors PPARγ, C/EBPα, and A-FABP were decreased by Chemerin during lipolysis or dedifferentiation in mature adipocytes. The de-differentiated preadipocytes could re-differentiate into mature adipocytes. Intriguingly, the formation of cells’ lipid droplets was promoted by Chemerin during preadipocyte differentiation. In addition, mRNA and protein expressions of PPARγ, C/EBPα, and A-FABP were up-regulated by Chemerin during preadipocytes differentiation. These results suggest that Chemerin promotes lipolysis in mature adipocytes and induces adipogenesis during preadipocyte re-differentiation, further indicating a dual role for Chemerin in the deposition of intramuscular fat in ruminant animals.

  相似文献   

16.
This study assessed the effects of selective inhibitors of 3',5'-cyclic nucleotide phosphodiesterases (PDEs) on adipocyte lipolysis. IC224, a selective inhibitor of type 1 phosphodiesterase (PDE1), suppressed lipolysis in murine 3T3-L1 adipocytes (69.6 +/- 5.4% of vehicle control) but had no effect in human adipocytes. IC933, a selective inhibitor of PDE2, had no effect on lipolysis in either cultured murine 3T3-L1 adipocytes or human adipocytes. Inhibition of PDE3 with cilostamide moderately stimulated lipolysis in murine 3T3-L1 and rat adipocytes (397 +/- 25% and 235 +/- 26% of control, respectively) and markedly stimulated lipolysis in human adipocytes (932 +/- 7.6% of control). Inhibition of PDE4 with rolipram moderately stimulated lipolysis in murine 3T3-L1 adipocytes (291 +/- 13% of control) and weakly stimulated lipolysis in rat adipocytes (149 +/- 7.0% of control) but had no effect on lipolysis in human adipocytes. Cultured adipocytes also responded differently to a combination of PDE3 and PDE4 inhibitors. Simultaneous exposure to cilostamide and rolipram had a synergistic effect on lipolysis in murine 3T3-L1 and rat adipocytes but not in human adipocytes. Hence, the relative importance of PDE3 and PDE4 in regulating lipolysis differed in cultured murine, rat, and human adipocytes.  相似文献   

17.
18.
Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.  相似文献   

19.
Fat-specific protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues and increases in abundance by over 50-fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over 15 years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and colocalizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNA interference-based FSP27/Cidec depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.  相似文献   

20.
Fat-specific protein 27 regulates storage of triacylglycerol   总被引:4,自引:0,他引:4  
FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins. In this study, we investigated the function of another member of this family, FSP27 (Cidec), in apoptosis and adipocyte metabolism. Although overexpression of FSP27 is sufficient to increase apoptosis of 293T and 3T3-L1 cells, more physiological levels of expression stimulate spontaneous lipid accumulation in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L1 adipocytes. Stable knockdown of FSP27 during adipogenesis of 3T3-L1 cells substantially decreases lipid droplet size, increases mitochondrial and lipid droplet number, and modestly increases glucose uptake and lipolysis. Expression of FSP27 in subcutaneous adipose tissue of a human diabetes cohort decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号