首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peripheral blood leukocyte responses of chickens and turkeys inoculated with one of three strains of a chicken Eimeria species adapted to the turkey embryo with their respective parent lines, or with E. adenoeides of the turkey were studied. The adapted lines tended to cause hematological changes in chickens and turkeys similar to those caused by E. adenoeides. These parasites caused the most significant increases in large mononuclear white blood cells = (monocytes) in both chickens and turkeys. These results provide further evidence for a monocyte/macrophage effector mechanism in the rejection of heterologous species of Eimeria from a nonspecific host. The results also agree with previous studies that show that increases in mononuclear white blood cells during parent E. tenella and E. necatrix infections in chickens occur during the periods of greatest tissue damage (3–4 days after inoculation). The generally unaffected lymphocyte numbers and increases in mononuclear white blood cells during infections with the adapted lines probably explain the reduced pathogenicity and the lack of immunogenicity seen previously in chickens inoculated with these three lines. Possibly, monocytes/macrophages play a role in the host specificity of the parasites.  相似文献   

2.
Madura cattle, which are native to Indonesia and mainly kept on Madura Island, East Java, are expected to contribute to improving the regional meat self-sufficiency. Eimeria spp. are the most pathogenic protozoans among gastrointestinal parasites in livestock but no molecular surveys of Eimeria spp. in Madura cattle have been conducted to date. In this study, a total of 183 fecal samples were collected from Madura cattle and 60 (32.8%) were positive for parasites of protozoans and nematodes by the sugar floatation method. Among the samples with parasites, Eimeria spp. oocysts were detected in 50 samples (27.3%) with an average OPG value of 1686.1. Eimeria spp. were successfully identified to the species level in 26 samples with Eimeria bovis being the most prevalent, followed by E. zuernii and E. aubrunensis. A total of 21 samples showed mixed infection of more than two species of Eimeria. E. bovis and E. zuernii have been recognized as having high virulency and, thus, these parasites are potential sources of severe coccidiosis and the cause of infections in other cattle. Although additional studies are warranted, these results can be helpful for improving the management and productivity of Madura cattle.  相似文献   

3.
Successful excystation of sporulated Eimeria spp. oocysts is an important step to acquire large numbers of viable sporozoites for molecular, biochemical, immunological and in vitro experiments for detailed studies on complex host cell-parasite interactions. An improved method for excystation of sporulated oocysts and collection of infective E. bovis- and E. arloingi-sporozoites is here described. Eimeria spp. oocysts were treated for at least 20 h with sterile 0.02 M L-cysteine HCl/0.2 M NaHCO3 solution at 37 °C in 100% CO2 atmosphere. The last oocyst treatment was performed with a 0.4% trypsin 8% sterile bovine bile excystation solution, which disrupted oocyst walls with consequent activation of sporozoites within oocyst circumplasm, thereby releasing up to 90% of sporozoites in approximately 2 h of incubation (37 °C) with a 1:3 (oocysts:sporozoites) ratio. Free-released sporozoites were filtered in order to remove rests of oocysts, sporocysts and non-sporulated oocysts. Furthermore, live cell imaging 3D holotomographic microscopy (Nanolive®) analysis allowed visualization of differing sporozoite egress strategies. Sporozoites of both species were up to 99% viable, highly motile, capable of active host cell invasion and further development into trophozoite- as well as macroment-development in primary bovine umbilical vein endothelial cells (BUVEC). Sporozoites obtained by this new excystation protocol were cleaner at the time point of exposure of BUVEC monolayers and thus benefiting from the non-activation status of these highly immunocompetent cells through debris. Alongside, this protocol improved former described methods by being is less expensive, faster, accessible for all labs with minimum equipment, and without requirement of neither expensive buffer solutions nor sophisticated instruments such as ultracentrifuges.  相似文献   

4.
Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E. maxima, Eimeria tenella and Eimeria acervulina. Homologous genes for two major gametocyte proteins - GAM56 and GAM82 - were found in E. maxima, E. tenella and E. acervulina. Alignment of the predicted protein sequences of these genes reveals that, as well as sharing regions of tyrosine richness, strong homology exists in their amino-terminal regions, where protective antibodies bind. This study confirms the conservation of the roles of GAM56 and GAM82 in oocyst wall formation and shows that antibodies to gametocyte antigens of E. maxima cross-react with homologous proteins in other species, helping to explain cross-species maternal immunity.  相似文献   

5.
Phylogenetic analysis of the genus Eimeria suggests that parasite and host have coevolved over broad evolutionary timescales. Here we extend this analysis by determining the 18S rDNA gene sequence of the marsupial coccidium, Eimeria trichosuri, and assessing its phylogenetic position relative to Eimeria from birds, reptiles and placental mammals. This analysis placed E. trichosuri clones in a clade that diverged before the major clade comprising species from placental mammals. The position of E.trichosuri is consistent with host phylogeny where marsupials represent an ancient evolutionary line that predates the placental mammal line.  相似文献   

6.
The effects of concurrent primary infection of the rat with Eimeria nieschulzi and Trichinella spiralis on the number of oocysts of E. nieschulzi shed by the host and on the number, distribution, and fecundity of adult T. spiralis were analyzed. When rats were initially infected with E. nieschulzi followed 9 days later by infection with T. spiralis there occurred a significant decrease in the total numbers of adult worms in the small intestine, a significant shift in the position of these worms along the length of the small gut, a decrease in the fecundity of adult female worms, and a decrease in muscle parasitism when compared with rats infected with T. spiralis alone. When rats were initially infected with T. spiralis, followed 9 days later by infection with E. nieschulzi, there occurred a significant decrease in the numbers of oocysts shed over 24 hr on Days 7, 9, and 11 postinfection below that seen with rats infected only with Eimeria. These changes are discussed in terms of the enteropathophysiologic lesions and enteric inflammation known to occur during infections with these two parasites.  相似文献   

7.
The study describes cross protection experiments with chimeric DNA vaccine pVAX1-cSZ2-IL-2 to determine its efficacy against four important Eimeria species. Seven-day-old chickens were randomly divided into nine groups; group 1 negative control, groups 2, 3, 4, 5 positive controls; and groups 6, 7, 8 and 9 experimental groups. On days 7 and 14, groups 1-5 were injected with TE buffer, and groups 6-9 with the vaccine. At 21 days of age, all chickens were inoculated with 5 × 104 sporulated oocysts except for the negative control. Groups 2 and 6 were inoculated with Eimeria tenella, groups 3 and 7 with Eimerianecatrix, groups 4 and 8 with Eimeria acervulina and groups 5 and 9 with Eimeria maxima. Seven days later, all chickens were weighed and slaughtered to obtain intestinal samples. Efficacy of immunization was evaluated on the basis of oocyst decrease ratio, lesion score, body-weight gain and anti-coccidial index. The results indicated that the recombinant plasmid can induce host immune responses by alleviating intestinal lesions, body weight loss and oocyst ratio and imparting good protection against E. tenella and E.acervulina, medium protection against E. necatrix but little effect against E. maxima. It is concluded that the conserved antigen can provide cross protection and should be explored further.  相似文献   

8.
A single-chain antibody library against Eimeria acervulina merozoites was constructed by phage display approach. Antibody-displaying phage was selected in four panning rounds against cryopreserved E. acervulina merozoites. Five clones were randomly selected from the fourth panning round, and their nucleotide sequences were aligned and compared to mouse germ-line sequences. Soluble antibody was produced in a non-suppressor Escherichia coli strain, purified by protein A affinity chromatography, and characterized by Western-blotting. Immunofluorescence assay showed localization of the produced recombinant antibody fragment on the surface E. acervulina merozoites. These resultant antibody fragments showed high specificity and binding capacity for soluble antigens and intact fixed merozoites which seems promising as diagnostic, therapeutic and/or vaccine tools against coccidiosis.  相似文献   

9.
Eimeriatenella and Toxoplasmagondii are Apicomplexan protozoa and share many similarities in biology and genomics. While the latter parasites are easily cultured in vitro and genetically manipulated, many Eimeria species are difficult to grow in vitro. We hypothesised that molecular tools for the genetic manipulation of T. gondii could be applied to the study of Eimeria parasites. Here we show that three different promoter sequences originating from E. tenella could function effectively not only in other species of the Eimeria genus (histone H4) but also in T. gondii (histone H4, actin and tubulin). Similarly, promoters of the “housekeeping” gene (tubulin) and differentially regulated gene (surface antigen gene, sag1) of T. gondii were effective in driving the expression of the yellow fluorescent protein (YFP) maker gene in E. tenella. The transfection efficiency with heterologous regulatory sequences was similar to that with homologous promoters; while the promoter strength of heterologous vectors is slightly weaker than the homologous vectors in both E. tenella and T. gondii. The results suggest that 5′ regulatory sequences are functionally conserved not only among the Eimeria species, but also between T. gondii and E. tenella, and that T. gondii could be used as a novel transfection check system for Eimeria-rooted vectors, accelerating the development of reverse genetics in Eimeria spp.  相似文献   

10.
11.
Endogenous stages of Eimeria sigmodontis were studied in experimentally infected cotton rats, Sigmodon hispidus. The parasites were located in mucosal epithelial cells of the cecum and colon. E. sigmodontis had a typical coccidian endogenous cycle that consisted of three asexual schizogonous stages and sexual stages composed of the macrogametes and microgametes. The first-, second-, and third-generation schizonts contained 10–17, 5–8 and 10–21 merozoites, respectively. Only one type of wall-forming body was present in the macrogamete. The microgametocyte had a monocentric type of development.  相似文献   

12.
13.

Background

Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed “gliding motility”. However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red blood cells (RBCs), and gliding motility has so far not been observed in the parasite.

Methodology/Principal Findings

Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion.

Conclusions/Significance

This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding.  相似文献   

14.
The apical complex of intracellular hemoparasites contains organelles like micronemes and rhoptries, specialized structures required for adherence and invasion of host cells. Several molecules discharged from rhoptries have been identified from Plasmodium spp., but only a single rhoptry associated protein-1 (RAP-1) has been characterized from Babesia bovis. In silico search of the B. bovis genome allowed to identifying a sequence homologous to the gene that encodes a P. falciparum rhoptry protein PfRhop148. The intron-less 1830 bp novel gene, predicted a 68 kDa protein, and it was highly conserved among different B. bovis strains and isolates. The deducted protein from the B. bovis T2Bo strain, named BboRhop68, showed two putative transmembrane domains, at least seven B-cell epitopes, and a well conserved DUF501 super family domain. The bborhop68 gene was amplified, analyzed and compared among different B. bovis strains and isolates showing overall high sequence conservation. A fragment of bborhop68 was expressed as a recombinant fusion protein (rBboRhop68). The mice anti-rBboRhop68 serum identified the novel protein in intraerythrocytic trophozoites and merozoites by WB and ELISA, but not in free merozoites. Sera from naturally and experimentally infected bovines also recognized BboRhop68, suggesting that it is expressed and immunogenic during B. bovis infection. Fluorescence microscopy analysis using anti-rBboRhop68 antibodies showed a rod structure associated to trophozoites and merozoites infected erythrocytes, but this pattern of reactivity was not observed in free merozoites. The BboRhop68 was also not detected in ELISA based on solubilized merozoites. Thus, at least three independent lines of evidence support differential expression of BboRhop68 in intraerythrocytic stages of B. bovis and its possible functional role immediately after B. bovis erythrocyte invasion. The results of this work suggest that BboRhop68 could be considered as a novel additional target for developing improved methods to control bovine babesiosis.  相似文献   

15.
A frozen section method utilising chicken intestinal tissue was developed to study the Eimeria tenella attachment ex vivo. In order to examine Eimeria-epithelial cell attachment, 105E. tenella sporozoites were incubated with each caecal frozen section (6, 10 and 14 μm) for 1 h in 5% CO2 incubator at 41 °C. E. tenella sporozoites attached successfully to enterocytes in 14 μm thick of caecal sections. Sporozoite attachment to caecal sections was shown to be dependent on the number of parasites added. To evaluate the method, E. tenella sporozoites were incubated to its preferred (caecum) and non-preferred (duodenum and jejunum) intestinal sites. The number of sporozoites attached to the caecal enterocytes was significantly greater (P < 0.0001) in comparison with the limited number of sporozoites attached to enterocytes of non-preferred intestinal sites. This method was shown to be able to reveal differences in binding capability and allows for comparison of intestinal site attachment.  相似文献   

16.
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.  相似文献   

17.
Artemisone was evaluated, in in vitro and in vivo, for control of bovine babesiosis caused by Babesia bigemina and Babesiabovis parasites. In vitro, artemisone reduced parasitemia in a dose-dependent manner: the inhibitory effects increased gradually, reaching a maximum inhibition of 99.6% and 86.4% for B. bigemina and B. bovis, respectively 72 h after initiation of treatment with initial parasitemia of 0.5%. In calves infected with either B. bigemina or B. bovis artemisone treatment was well tolerated and prevented development of acute babesiosis in all animals except for one B. bovis-infected calf. The treatment did not eliminate all blood parasites, and recovered animals carried a persistent low-level infection. Treatment with artemisone may be useful as an alternative drug for preventing the pathology that results from babesiosis, without interfering with acquired immune protection following recovery from an acute babesiosis infection or vaccination.  相似文献   

18.
19.
The ultrastructure of the merozoites of the parasite Barroussia schneiden (Bütschli, 1882) Reichenow & Schellack, 1912 in the intestinal cells of its centipede host, Lithobius forficatus (L) is described. The pellicle consists of a single outer and a double inner membrane under which there are 51 microtubules extending longitudinally. A micropore is present. The characteristic organelles and cytoplasmic inclusions of the merozoites of the Eimeriidac arc present: conoid, rhoptries (possibly 6), micronemes, nucleus with nueleolus, mitochondria with bulbous cristae, prominent Golgi complex, polysaccharide granules and granular endoplasmic reticulum.  相似文献   

20.
Resistance to reinfection varied with the species of Eimeria and with the number of oocysts in the inoculum. Chickens immunized with doses of 20,000 and 80,000 oocysts of E. acervulina, 312 and 1250 oocysts of E. brunetti or E. necatrix, or 1250 and 5000 oocysts of E. maxima at 2 and 4 weeks of age, respectively, were almost completely immune to a challenge dose at 6 weeks of age. Resistance was slightly less in chickens immunized with 1250 and 5000 oocysts of E. acervulina or 312 and 1250 oocysts of E. maxima. Birds given three immunizing infections of 1250, 5000, and 20,000 oocysts of E. maxima were completely immune 8 weeks after the last dose. Resistance was slightly less in birds immunized with similar doses of E. brunetti or E. necatrix. Doses of 20,000, 80,000, and 320,000 oocysts appeared necessary to confer a high level of immunity to E. acervulina. More than three low doses of oocysts appear necessary to induce a complete and enduring immunity against a high challenge for E. acervulina, E. brunetti, and E. necatrix. Higher immunizing doses would not be satisfactory due to the pathogenic effects of the coccidia after the initial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号