首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.  相似文献   

2.
The genome of Lactococcus lactis encodes a single long chain 3-ketoacyl-acyl carrier protein synthase. This is in contrast to its close relative, Enterococcus faecalis, and to Escherichia coli, both of which have two such enzymes. In E. faecalis and E. coli, one of the two long chain synthases (FabO and FabB, respectively) has a role in unsaturated fatty acid synthesis that cannot be satisfied by FabF, the other long chain synthase. Since L. lactis has only a single long chain 3-ketoacyl-acyl carrier protein synthase (annotated as FabF), it seemed likely that this enzyme must function both in unsaturated fatty acid synthesis and in elongation of short chain acyl carrier protein substrates to the C18 fatty acids found in the cellular phospholipids. We report that this is the case. Expression of L. lactis FabF can functionally replace both FabB and FabF in E. coli, although it does not restore thermal regulation of phospholipid fatty acid composition to E. coli fabF mutant strains. The lack of thermal regulation was predictable because wild-type L. lactis was found not to show any significant change in fatty acid composition with growth temperature. We also report that overproduction of L. lactis FabF allows growth of an L. lactis mutant strain that lacks the FabH short chain 3-ketoacyl-acyl carrier protein synthase. The strain tested was a derivative (called the ∆fabH bypass strain) of the original fabH deletion strain that had acquired the ability to grow when supplemented with octanoate. Upon introduction of a FabF overexpression plasmid into this strain, growth proceeded normally in the absence of fatty acid supplementation. Moreover, this strain had a normal rate of fatty acid synthesis and a normal fatty acid composition. Both the ∆fabH bypass strain that overproduced FabF and the wild type strain incorporated much less exogenous octanoate into long chain phospholipid fatty acids than did the ∆fabH bypass strain. Incorporation of octanoate and decanoate labeled with deuterium showed that these acids were incorporated intact as the distal methyl and methylene groups of the long chain fatty acids.  相似文献   

3.
金黄色葡萄球菌引起的危害是目前我国微生物安全的重要问题之一。金黄色葡萄球菌通过脂肪酸生物合成磷脂酸(磷脂合成必需中间体)合成细胞膜磷脂以完成自身繁殖。因此,抑制菌体磷脂酸合成可有效防控金黄色葡萄球菌对环境及生物体造成危害。然而,金黄色葡萄球菌可经II型脂肪酸合成(type II fatty acid synthesis, FASII)通路和旁路两条途径合成磷脂酸,常规抑菌剂仅靶向抑制FASII通路,可能导致菌体在富含外源脂肪酸条件下出现“旁路逃逸”,形成防控漏洞。为此,本文系统总结金黄色葡萄球菌基于FASII通路和旁路合成细胞磷脂酸及磷脂酸向其他磷脂类物质转化的信号传导过程,讨论抑菌物质靶向抑制上述信号传导过程中可能的关键靶点,为新型抑菌剂开发提供理论指导。  相似文献   

4.
The development of efficient microbial processes for pinocembrin production has attracted considerable attention. However, pinocembrin biosynthetic efficiency is greatly limited by the low availability of the malonyl-CoA cofactor in Escherichia coli. Fatty acid biosynthesis is the only metabolic process in E. coli that consumes malonyl-CoA; therefore, we overexpressed the fatty acid biosynthetic pathway enzymes β-ketoacyl-ACP synthase III (FabH) and β-ketoacyl-ACP synthase II (FabF) alone and in combination, and investigated the effect on malonyl-CoA. Interestingly, overexpressing FabH, FabF or both enzymes in E. coli BL21 (DE3) decreased fatty acid synthesis and increased cellular malonyl-CoA levels 1.4-, 1.6-, and 1.2-fold, respectively. Furthermore, pinocembrin production was increased 10.6-, 31.8-, and 5.87-fold in recombinant strains overexpressing FabH, FabF and both enzymes, respectively. Overexpression of FabF, therefore, triggered the highest pinocembrin production and malonyl-CoA levels. The addition of cerulenin further increased pinocembrin production in the FabF-overexpressing strain, from 25.8 to 29.9 mg/L. These results demonstrated that overexpressing fatty acid synthases can increase malonyl-CoA availability and improve pinocembrin production in a recombinant E. coli host. This strategy may hold promise for the production of other important natural products in which cellular malonyl-CoA is rate limiting.  相似文献   

5.
6.
The prototypical type II fatty acid synthesis (FAS) pathway in bacteria utilizes two distinct classes of β-ketoacyl synthase (KAS) domains to assemble long-chain fatty acids, the KASIII domain for initiation and the KASI/II domain for elongation. The central role of FAS in bacterial viability and virulence has stimulated significant effort toward developing KAS inhibitors, particularly against the KASIII domain of the β-acetoacetyl-acyl carrier protein (ACP) synthase FabH. Herein, we show that the opportunistic pathogen Pseudomonas aeruginosa does not utilize a FabH ortholog but rather a new class of divergent KAS I/II enzymes to initiate the FAS pathway. When a P. aeruginosa cosmid library was used to rescue growth in a fabH downregulated strain of Escherichia coli, a single unannotated open reading frame, PA5174, complemented fabH depletion. While deletion of all four KASIII domain-encoding genes in the same P. aeruginosa strain resulted in a wild-type growth phenotype, deletion of PA5174 alone specifically attenuated growth due to a defect in de novo FAS. Siderophore secretion and quorum-sensing signaling, particularly in the rhl and Pseudomonas quinolone signal (PQS) systems, was significantly muted in the absence of PA5174. The defect could be repaired by intergeneric complementation with E. coli fabH. Characterization of recombinant PA5174 confirmed a preference for short-chain acyl coenzyme A (acyl-CoA) substrates, supporting the identification of PA5174 as the predominant enzyme catalyzing the condensation of acetyl coenzyme A with malonyl-ACP in P. aeruginosa. The identification of the functional role for PA5174 in FAS defines the new FabY class of β-ketoacyl synthase KASI/II domain condensation enzymes.  相似文献   

7.
The elongation condensing enzymes in the bacterial fatty acid biosynthesis pathway represent desirable targets for the design of novel, broad-spectrum antimicrobial agents. A series of substituted benzoxazolinones was identified in this study as a novel class of elongation condensing enzyme (FabB and FabF) inhibitors using a two-step virtual screening approach. Structure activity relationships were developed around the benzoxazolinone scaffold showing that N-substituted benzoxazolinones were most active. The benzoxazolinone scaffold has high chemical tractability making this chemotype suitable for further development of bacterial fatty acid synthesis inhibitors.  相似文献   

8.
We describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C20 fatty acids to form C60-to-C90 mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials. Unlike FASI, FASII is thought to be incapable of de novo biosynthesis of fatty acids. Here, the genes for InhA (Rv1484) and four similar proteins (Rv0927c, Rv3485c, Rv3530c, and Rv3559c) were expressed in S. cerevisiae etr1Δ cells lacking mitochondrial 2-trans-enoyl-thioester reductase activity. The phenotype of the yeast mutants includes the inability to produce sufficient levels of lipoic acid, form mitochondrial cytochromes, respire, or grow on nonfermentable carbon sources. Yeast etr1Δ cells expressing mitochondrial InhA were able to respire, grow on glycerol, and produce lipoic acid. Commensurate with a role in mitochondrial de novo fatty acid biosynthesis, InhA could accept in vivo much shorter acyl-thioesters (C4 to C8) than was previously thought (>C12). Moreover, InhA functioned in the absence of AcpM or protein-protein interactions with its native FASII partners KasA, KasB, FabD, and FabH. None of the four proteins similar to InhA complemented the yeast mutant phenotype. We discuss the implications of our findings with reference to lipoic acid synthesis in M. tuberculosis and the potential use of yeast FASII mutants for investigating the physiological function of drug-targeted pathogen enzymes involved in fatty acid biosynthesis.  相似文献   

9.
Branched-chain amino acids (primarily isoleucine) are important regulators of virulence and are converted to precursor molecules used to initiate fatty acid synthesis in Staphylococcus aureus. Defining how bacteria control their membrane phospholipid composition is key to understanding their adaptation to different environments. Here, we used mass tracing experiments to show that extracellular isoleucine is preferentially metabolized by the branched-chain ketoacid dehydrogenase complex, in contrast to valine, which is not efficiently converted to isobutyryl-CoA. This selectivity creates a ratio of anteiso:iso C5-CoAs that matches the anteiso:iso ratio in membrane phospholipids, indicating indiscriminate utilization of these precursors by the initiation condensing enzyme FabH. Lipidomics analysis showed that removal of isoleucine and leucine from the medium led to the replacement of phospholipid molecular species containing anteiso/iso 17- and 19-carbon fatty acids with 18- and 20-carbon straight-chain fatty acids. This compositional change is driven by an increase in the acetyl-CoA:C5-CoA ratio, enhancing the utilization of acetyl-CoA by FabH. The acyl carrier protein (ACP) pool normally consists of odd carbon acyl-ACP intermediates, but when branched-chain amino acids are absent from the environment, there was a large increase in even carbon acyl-ACP pathway intermediates. The high substrate selectivity of PlsC ensures that, in the presence or the absence of extracellular Ile/Leu, the 2-position is occupied by a branched-chain 15-carbon fatty acid. These metabolomic measurements show how the metabolism of isoleucine and leucine, rather than the selectivity of FabH, control the structure of membrane phospholipids.  相似文献   

10.
Fatty acid biosynthesis is an emerging target for the development of novel antibacterial chemotherapeutics. The dissociated bacterial system is substantially different from the large, multifunctional protein of mammals, and many possibilities exist for type-selective drugs. Several compounds, both synthetic and natural, target bacterial fatty acid synthesis. Three compounds target the FabI enoyl-ACP reductase step; isoniazid, a clinically used antituberculosis drug, triclosan, a widely used consumer antimicrobial, and diazaborines. In addition, cerulenin and thiolactomycin, two fungal products, inhibit the FabH, FabB and FabF condensation enzymes. Finally, the synthetic reaction intermediates BP1 and decynoyl- N-acetyl cysteamine inhibit the acetyl-CoA carboxylase and dehydratase isomerase steps, respectively. The mechanisms of action of these compounds, as well as the potential development of new drugs targeted against this pathway, are discussed.  相似文献   

11.
FabF elongation condensing enzyme is a critical factor in determining the spectrum of products produced by the FASII pathway. Its active site contains a critical cysteine-thiol residue, which is a plausible target for oxidation by H2O2. Streptococcus pneumoniae produces exceptionally high levels of H2O2, mainly through the conversion of pyruvate to acetyl-P via pyruvate oxidase (SpxB). We present evidence showing that endogenous H2O2 inhibits FabF activity by specifically oxidizing its active site cysteine-thiol residue. Thiol trapping methods revealed that one of the three FabF cysteines in the wild-type strain was oxidized, whereas in an spxB mutant, defective in H2O2 production, none of the cysteines was oxidized, indicating that the difference in FabF redox state originated from endogenous H2O2. In vitro exposure of the spxB mutant to various H2O2 concentrations further confirmed that only one cysteine residue was susceptible to oxidation. By blocking FabF active site cysteine with cerulenin we show that the oxidized cysteine was the catalytic one. Inhibition of FabF activity by either H2O2 or cerulenin resulted in altered membrane fatty acid composition. We conclude that FabF activity is inhibited by H2O2 produced by S. pneumoniae.  相似文献   

12.
Mycolic acids are vital components of the Mycobacterium tuberculosis cell wall, and enzymes involved in their formation represent attractive targets for the discovery of novel anti-tuberculosis agents. Biosynthesis of the fatty acyl chains of mycolic acids involves two fatty acid synthetic systems, the multifunctional polypeptide fatty acid synthase I (FASI), which performs de novo fatty acid synthesis, and the dissociated FASII system, which consists of monofunctional enzymes, and acyl carrier protein (ACP) and elongates FASI products to long chain mycolic acid precursors. In this study, we present the initial characterization of purified KasA and KasB, two beta-ketoacyl-ACP synthase (KAS) enzymes of the M. tuberculosis FASII system. KasA and KasB were expressed in E. coli and purified by affinity chromatography. Both enzymes showed activity typical of bacterial KASs, condensing an acyl-ACP with malonyl-ACP. Consistent with the proposed role of FASII in mycolic acid synthesis, analysis of various acyl-ACP substrates indicated KasA and KasB had higher specificity for long chain acyl-ACPs containing at least 16 carbons. Activity of KasA and KasB increased with use of M. tuberculosis AcpM, suggesting that structural differences between AcpM and E. coli ACP may affect their recognition by the enzymes. Both enzymes were sensitive to KAS inhibitors cerulenin and thiolactomycin. These results represent important steps in characterizing KasA and KasB as targets for antimycobacterial drug discovery.  相似文献   

13.
The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (~70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a ΔfabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.  相似文献   

14.
The anaerobic unsaturated fatty acid synthetic pathway of Escherichia coli requires two specialized proteins, FabA and FabB. However, the fabA and fabB genes are found only in the Gram-negative alpha- and gamma-proteobacteria, and thus other anaerobic bacteria must synthesize these acids using different enzymes. We report that the Gram-positive bacterium Enterococcus faecalis encodes a protein, annotated as FabZ1, that functionally replaces the E. coli FabA protein, although the sequence of this protein aligns much more closely with E. coli FabZ, a protein that plays no specific role in unsaturated fatty acid synthesis. Therefore E. faecalis FabZ1 is a bifunctional dehydratase/isomerase, an enzyme activity heretofore confined to a group of Gram-negative bacteria. The FabZ2 protein is unable to replace the function of E. coli FabZ, although FabZ2, a second E. faecalis FabZ homologue, has this ability. Moreover, an E. faecalis FabF homologue (FabF1) was found to replace the function of E. coli FabB, whereas a second FabF homologue was inactive. From these data it is clear that bacterial fatty acid biosynthetic pathways cannot be deduced solely by sequence comparisons.  相似文献   

15.
β-Ketoacyl-acyl carrier protein (ACP) synthase III (KASIII) catalyzes the first elongation step in straight-chain fatty acid (SCFA) biosynthesis in Escherichia coli. Overproduction of the corresponding KASIII gene, or the Brassica napus KASIII gene has previously been observed to lead to an increase in the amount of shorter-chain fatty acids produced by E. coli. In this study it is shown that overexpression of the KASIII gene, which initiates branched-chain fatty acid (BCFA) in Streptomyces glaucescens, does not lead to a change in the fatty acid profiles of E. coli. E. coli produces trace levels of BCFAs when grown in the presence of isobutyric acid, but the amounts of these are not significantly altered by expression of the S. glaucescens KASIII gene. In contrast, the amounts of BCFAs produced from isobutyryl CoA in vitro by E. coli cell-free extracts can be increased at least four-fold by the presence of the S. glaucescens KASIII. These observations suggest that in vivo production of isopalmitate by E. coli expressing the S. glaucescens KASIII is limited by availability of the appropriate BCFA biosynthetic primers. Journal of Industrial Microbiology & Biotechnology (2001) 27, 246–251. Received 10 January 2001/ Accepted in revised form 13 July 2001  相似文献   

16.
The Streptomyces glaucescens fabH gene, encoding β-ketoacyl-acyl carrier protein (β-ketoacyl-ACP) synthase (KAS) III (FabH), was overexpressed in Escherichia coli, and the resulting gene product was purified to homogeneity by metal chelate chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified protein revealed an Mr of 37,000, while gel filtration analysis determined a native Mr of 72,000 ± 3,000 (mean ± standard deviation), indicating that the enzyme is homodimeric. The purified recombinant protein demonstrated both KAS activity and acyl coenzyme A (acyl-CoA):ACP transacylase (ACAT) activity in a 1:0.12 ratio. The KAS and ACAT activities were both sensitive to thiolactomycin inhibition. The KAS activity of the protein demonstrated a Km value of 3.66 μM for the malonyl-ACP substrate and an unusual broad specificity for acyl-CoA substrates, with Km values of 2.4 μM for acetyl-CoA, 0.71 μM for butyryl-CoA, and 0.41 μM for isobutyryl-CoA. These data suggest that the S. glaucescens FabH is responsible for initiating both straight- and branched-chain fatty acid biosynthesis in Streptomyces and that the ratio of the various fatty acids produced by this organism will be dictated by the ratios of the various acyl-CoA substrates that can react with FabH. Results from a series of in vivo directed biosynthetic experiments in which the ratio of these acyl-CoA substrates was varied are consistent with this hypothesis. An additional set of in vivo experiments using thiolactomycin provides support for the role of FabH and further suggests that a FabH-independent pathway for straight-chain fatty acid biosynthesis operates in S. glaucescens.  相似文献   

17.
Fatty acids that are chemically functionalized at their ω-ends are rare in nature yet offer unique chemical and physical properties with wide ranging industrial applications as feedstocks for bio-based polymers, lubricants and surfactants. Two enzymatic determinants control this ω-group functionality, the availability of an appropriate acyl-CoA substrate for initiating fatty acid biosynthesis, and a fatty acid synthase (FAS) variant that can accommodate that substrate in the initial condensation reaction of the process. In Type II FAS, 3-ketoacyl-ACP synthase III (KASIII) catalyses this initial condensation reaction. We characterized KASIIIs from diverse bacterial sources, and identified variants with novel substrate specificities towards atypical acyl-CoA substrates, including 3-hydroxybutyryl-CoA. Using Alicyclobacillus acidocaldarius KASIII, we demonstrate the in vivo diversion of FAS to produce novel ω-1 hydroxy-branched fatty acids from glucose in two bioengineered microbial hosts. This study unveils the biocatalytic potential of KASIII for synthesizing diverse ω-functionalized fatty acids.  相似文献   

18.
FabH (β-ketoacyl-acyl carrier protein synthase III) is unique in that it initiates fatty acid biosynthesis, is inhibited by long-chain fatty acids providing means for feedback control of the process, and dictates the fatty acid profile of the organism by virtue of its substrate specificity. We report the crystal structures of bacterial FabH enzymes from four different pathogenic species: Enterococcus faecalis, Haemophilus influenzae, Staphylococcus aureus and Escherichia coli. Structural data on the enzyme from different species show important differences in the architecture of the substrate-binding sites that parallel the inter-species diversity in the substrate specificities of these enzymes.  相似文献   

19.
We report the isolation and expression analysis of two cDNAs encoding 3-ketoacyl-acyl carrier protein synthases (KAS) that are involved in the de novo synthesis of fatty acids in plastids of perilla (Perilla frutescens L.). The cDNAs, designated PfFAB1 and PfFAB24, encoded polypeptides with high sequence identities to those of KAS I and KAS II/IV, respectively, of various plants. Genomic Southern blots revealed that there was a single PfFAB1 gene but two PfFAB24 genes in the perilla genome. Of interest is that the expression of both genes was developmentally regulated in seeds. Their mRNA expression patterns in seeds were also discussed in comparison with the profile of fatty acid accumulation.  相似文献   

20.
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号