首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection.Here we demonstrate that artificial up-regulation of fatty acid biosynth...  相似文献   

2.
Viruses have evolved to complex relationship with their host cells. Many viruses modulate the lipid composition, lipid synthesis and signaling of their host cell. Lipids are also an essential part of the life cycle of the hepatitis C virus (HCV). HCV is a major human pathogen, persistently infecting 170 million people worldwide, with no currently effective treatment available for all patients. HCV appears to make use of the host lipid metabolism and one common feature of chronic hepatitis C is the steatosis, characterized by excessive accumulation of triglycerides and lipid content in the liver. Thus, HCV lifecycle appears to be closely connected to host cell lipid metabolism, from cell entry, through viral RNA replication to viral particle production and formation/assembly.  相似文献   

3.
已知丙型肝炎病毒(hepatitis C virus,HCV)可通过其蛋白酶NS3/4A切割线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein,MAVS)来逃逸天然免疫识别,但尚不清楚其切割动力学及切割在抑制干扰素中的作用。本研究旨在细胞模型中探讨HCV感染过程中病毒复制建立及病毒NS3/4A切割MAVS的动态过程,探究NS3/4A切割MAVS对病毒逃逸宿主天然免疫建立感染的贡献。首先构建基于绿色荧光蛋白(green fluorescent protein,GFP)的MAVS切割报告系统(GFP-NLS-MAVS-TM462),用 HCV Jc1-Gluc 感染Huh7.5/GFP-NLS-MAVS-TM462细胞。结果显示,病毒复制早期MAVS切割效率较低;NS3/4A高效切割MAVS发生于HCV复制晚期,且其切割效率与NS3蛋白水平相关。利用带有GFP ypet的HCV报告病毒Jc1-378-1感染Huh7.5/RFP-NLS-MAVS-TM462细胞,在单细胞水平观察HCV感染阳性细胞中MAVS被切割情况,发现HCV复制细胞中仅部分细胞MAVS被切割。进一步研究发现,不同基因型NS3/4A切割MAVS的效率仅与NS3表达水平相关。以上结果提示,HCV蛋白酶NS3/4A切割MAVS依赖NS3/4A蛋白在病毒复制过程中的累积,对在病毒复制早期逃逸宿主天然免疫建立感染可能无显著贡献。  相似文献   

4.
《FEBS letters》2014,588(9):1813-1820
To identify the novel genes involved in lipid metabolism and lipid droplet formation that may play important roles in Hepatitis C virus (HCV) propagation, we have screened the small interfering RNA library using cell culture derived HCV (HCVcc)-infected cells. We selected and characterized the gene encoding farnesyl-diphosphate farnesyltransferase 1 (FDFT1). siRNA-mediated knockdown of FDFT1 impaired HCV replication in both subgenomic replicon and HCVcc infected cells. Moreover, YM-53601, an inhibitor of FDFT1 enzyme activity, abrogated HCV propagation. HCV infection increased FDFT1 protein level but not FDFT1 mRNA level. These results suggest that HCV may modulate FDFT1 protein level to facilitate its own propagation.  相似文献   

5.
6.
Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with chronic HCV.  相似文献   

7.
In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection.  相似文献   

8.
Hepatitis C virus (HCV) infection involves a variety of viral and host factors, which leads to the dysregulation of number of relevant genes including long noncoding RNAs (LncRNAs). LncRNA urothelial carcinoma-associated 1 (UCA1) has been reported to be upregulated in HCV-infected individuals. In a bid to elucidate on the contribution of UCA1 on HCV replication, we infected Huh7.5 cells with cell culture-derived HCV and found that UCA1 expression was elevated in time- and dose-dependent manners. Functionally, UCA1 knockdown by siRNA upregulated interferon (IFN) responses, thereby increasing the expression of interferon-stimulating genes (ISGs), and subsequently suppressing HCV replication. Bioinformatics analysis and experimental results indicated that, functioning as competitive endogenous RNA, UCA1 could sponge microRNA (miR)-145-5p, which targeted suppressor of cytokine signaling 7 (SOCS7) mRNA and subsequently mediated SOCS7 silencing. Moreover, SOCS7 protein exerted an inhibitory effect on IFN responses, thereby facilitating HCV replication. Taken together, at first, our findings demonstrate that UCA1 can counteract the expression of miR-145-5p, thereby upregulating the level of SOCS7, and in turn leading to the suppression of antiviral response in Huh7.5 cells.  相似文献   

9.
Roe B  Kensicki E  Mohney R  Hall WW 《PloS one》2011,6(8):e23641
Hepatitis C virus (HCV) is capable of disrupting different facets of lipid metabolism and lipids have been shown to play a crucial role in the viral life cycle. The aim of this study was to examine the effect HCV infection has on the hepatocyte metabolome. Huh-7.5 cells were infected using virus produced by the HCV J6/JFH1 cell culture system and cells were harvested 24, 48, and 72-hours following infection. Metabolic profiling was performed using a non-targeted multiple platform methodology combining ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS(2)) and gas chromatography/mass spectrometry (GC/MS). There was a significant increase in a number of metabolites involved in nucleotide synthesis and RNA replication during early HCV infection. NAD levels were also significantly increased along with several amino acids. A number of lipid metabolic pathways were disrupted by HCV infection, resulting in an increase in cholesterol and sphingolipid levels, altered phospholipid metabolism and a possible disruption in mitochondrial fatty acid transport. Fluctuations in 5'-methylthioadenosine levels were also noted, along with alterations in the glutathione synthesis pathway. These results highlight a number of previously unreported metabolic interactions and give a more in depth insight into the effect HCV has on host cell biochemical processes.  相似文献   

10.
Even though substantial progress has been made in the treatment of hepatitis C virus (HCV) infection, viral resistance and relapse still occur in some patients and additional therapeutic approaches may ultimately be needed should viral resistance become more prevalent. Microtubules play important roles in several HCV life cycle events, including cell attachment, entry, cellular transportation, morphogenesis and progeny secretion steps. Therefore, it was hypothesized that microtubular inhibition might be a novel approach for the treatment of HCV infection. Here, the inhibitory effects of our recently developed microtubule inhibitors were studied in the HCV replicon luciferase reporter system and the infectious system. In addition, the combination responses of microtubule inhibitors with daclatasvir, which is a clinically used HCV NS5A inhibitor, were also evaluated. Our results indicated that microtubule targeting had activity against HCV replication and showed synergistic effect with a current clinical drug.  相似文献   

11.
Hepatitis C virus (HCV) is a single-stranded RNA virus that replicates on endoplasmic reticulum-derived membranes. HCV particle assembly is dependent on the association of core protein with cellular lipid droplets (LDs). However, it remains uncertain whether HCV assembly occurs at the LD membrane itself or at closely associated ER membranes. Furthermore, it is not known how the HCV replication complex and progeny genomes physically associate with the presumed sites of virion assembly at or near LDs. Using an unbiased proteomic strategy, we have found that Rab18 interacts with the HCV nonstructural protein NS5A. Rab18 associates with LDs and is believed to promote physical interaction between LDs and ER membranes. Active (GTP-bound) forms of Rab18 bind more strongly to NS5A than a constitutively GDP-bound mutant. NS5A colocalizes with Rab18-positive LDs in HCV-infected cells, and Rab18 appears to promote the physical association of NS5A and other replicase components with LDs. Modulation of Rab18 affects genome replication and possibly also the production of infectious virions. Our results support a model in which specific interactions between viral and cellular proteins may promote the physical interaction between membranous HCV replication foci and lipid droplets.  相似文献   

12.
Wang Q  Chen J  Wang Y  Han X  Chen X 《PloS one》2012,7(6):e38522
Epidemiological and experimental studies have suggested that Hepatitis C virus (HCV) infection is associated with the development of type 2 diabetes. Pancreatic beta cell failure is central to the progression of type 2 diabetes. Using virus infection system, we investigate the influence of HCV infection on the fate of the insulinoma cell line, MIN6. Our experiments demonstrate that the HCV virion itself is indispensable and has a dose- and time-dependent cytopathic effect on the cells. HCV infection inhibits cell proliferation and induces death of MIN6 cells with apoptotic characteristics, including cell surface exposure of phosphatidylserine, decreased mitochondrial membrane potential, activation of caspase 3 and poly (ADP-ribose) polymerase, and DNA fragmentation in the nucleus. However, the fact that HCV-infected cells exhibit a dilated, low-density nucleus with intact plasma and nuclear membrane indicates that a novel apoptosis-like death occurs. HCV infection also causes endoplasmic reticulum (ER) stress. Further, HCV RNA replication was detected in MIN6 cells, although the infection efficiency is very low and no progeny virus particle generates. Taken together, our data suggest that HCV infection induces death of pancreatic beta cells through an ER stress-involved, caspase 3-dependent, special pathway.  相似文献   

13.
为建立丙型肝炎病毒(HCV)体外感染和细胞培养系统,用定量的HCV RNA阳性血清感染人肝癌细胞系(HepG2细胞系),应用地高辛标记HCV RNA探针原位杂交技术和RT-PCR方法对感染后的细胞和上清液听 HCV RNA进行了检测。在感染后的第一代至第七代的细胞中出现特异性杂交阳性信号,第一代、第二代和第六代检测出HCV RNA正链,并在感染后第一、二代检测出HCV RNA负链。显示HCV不仅能在体外感染HepG2细胞系,而且在基因的复制,证明HepG2细胞能作为HCV的体外细胞培育系。  相似文献   

14.
Hepatitis C virus (HCV) RNA replicates within the ribonucleoprotein complex, assembled on the endoplasmic reticulum (ER)-derived membranous structures closely juxtaposed to the lipid droplets that facilitate the post-replicative events of virion assembly and maturation. It is widely believed that the assembled virions piggy-back onto the very low density lipoprotein particles for secretion. Lipid phosphoinositides are important modulators of intracellular trafficking. Golgi-localized phosphatidylinositol 4-phosphate (PI4P) recruits proteins involved in Golgi trafficking to the Golgi membrane and promotes anterograde transport of secretory proteins. Here, we sought to investigate the role of Golgi-localized PI4P in the HCV secretion process. Depletion of the Golgi-specific PI4P pool by Golgi-targeted PI4P phosphatase hSac1 K2A led to significant reduction in HCV secretion without any effect on replication. We then examined the functional role of a newly identified PI4P binding protein GOLPH3 in the viral secretion process. GOLPH3 is shown to maintain a tensile force on the Golgi, required for vesicle budding via its interaction with an unconventional myosin, MYO18A. Silencing GOLPH3 led to a dramatic reduction in HCV virion secretion, as did the silencing of MYO18A. The reduction in virion secretion was accompanied by a concomitant accumulation of intracellular virions, suggesting a stall in virion egress. HCV-infected cells displayed a fragmented and dispersed Golgi pattern, implicating involvement in virion morphogenesis. These studies establish the role of PI4P and its interacting protein GOLPH3 in HCV secretion and strengthen the significance of the Golgi secretory pathway in this process.  相似文献   

15.
The hepatitis C virus (HCV) replicates on a membrane protein complex composed of viral proteins, replicating RNA, and altered cellular membranes. Small-molecule inhibitors of cellular lipid-cholesterol metabolism such as 25-hydroxycholesterol, cerulenin, lovastatin, and GGTI-286 all show a negative effect on HCV replication. Perturbation of host cell lipid and cholesterol metabolism can disrupt replication complexes by altering membranous structures where replication occurs. Changes in cholesterol and (or) lipid composition can have a general effect on membrane structure. Alternatively, metabolic changes can exert a more subtle influence over replication complexes by altering localization of host proteins through alterations in lipid anchoring. Here, we use Huh-7 cells harboring subgenomic HCV replicons to demonstrate that 25-hydroxycholesterol, cerulenin, lovastatin, and GGTI-286 do not disrupt the membranous web where replication occurs, whereas cholesterol-depleting agents such as beta-cyclodextrin do. Cellular imaging suggests that the HCV RNA can remain associated with subcellular compartments connected with replication complexes in the presence of metabolic inhibitors. Therefore, at least 2 different molecular mechanisms are possible for the inhibition of HCV replication through the modulation of cellular lipid and cholesterol metabolism.  相似文献   

16.
17.
Red‐spotted grouper nervous necrosis virus (RGNNV), the causative agent of viral nervous necrosis disease, has caused high mortality and heavy economic losses in marine aquaculture worldwide. However, changes in host cell metabolism during RGNNV infection remain largely unknown. Here, the global metabolic profiling during RGNNV infection and the roles of cellular fatty acid synthesis in RGNNV infection were investigated. As the infection progressed, 71 intracellular metabolites were significantly altered in RGNNV‐infected cells compared with mock‐infected cells. The levels of metabolites involved in amino acid biosynthesis and metabolism were significantly decreased, whereas those that correlated with fatty acid synthesis were significantly up‐regulated during RGNNV infection. Among them, tryptophan and oleic acid were assessed as the most crucial biomarkers for RGNNV infection. In addition, RGNNV infection induced the formation of lipid droplets and re‐localization of fatty acid synthase (FASN), indicating that RGNNV induced and required lipogenesis for viral infection. The exogenous addition of palmitic acid (PA) enhanced RGNNV infection, and the inhibition of FASN and acetyl‐CoA carboxylase (ACC) significantly decreased RGNNV replication. Additionally, not only inhibition of palmitoylation and phospholipid synthesis, but also destruction of fatty acid β‐oxidation significantly decreased viral replication. These data suggest that cellular fatty acid synthesis and mitochondrial β‐oxidation are essential for RGNNV to complete the viral life cycle. Thus, it has been demonstrated for the first time that RGNNV infection in vitro overtook host cell metabolism and, in that process, cellular fatty acid synthesis was an essential component for RGNNV replication.  相似文献   

18.
Hepatitis C virus (HCV) core protein has been suggested to play crucial roles in the pathogeneses of liver steatosis and hepatocellular carcinomas due to HCV infection. Intracellular HCV core protein is localized mainly in lipid droplets, in which the core protein should exert its significant biological/pathological functions. In this study, we performed comparative proteomic analysis of lipid droplet proteins in core-expressing and non-expressing hepatoma cell lines. We identified 38 proteins in the lipid droplet fraction of core-expressing (Hep39) cells and 30 proteins in that of non-expressing (Hepswx) cells by 1-D-SDS-PAGE/MALDI-TOF mass spectrometry (MS) or direct nanoflow liquid chromatography-MS/MS. Interestingly, the lipid droplet fraction of Hep39 cells had an apparently lower content of adipose differentiation-related protein and a much higher content of TIP47 than that of Hepswx cells, suggesting the participation of the core protein in lipid droplet biogenesis in HCV-infected cells. Another distinct feature is that proteins involved in RNA metabolism, particularly DEAD box protein 1 and DEAD box protein 3, were detected in the lipid droplet fraction of Hep39 cells. These results suggest that lipid droplets containing HCV core protein may participate in the RNA metabolism of the host and/or HCV, affecting the pathopoiesis and/or virus replication/production in HCV-infected cells.  相似文献   

19.
HCV infection can lead to chronic infectious hepatitis disease with serious sequelae. Interferon-alpha, or its PEGylated form, plus ribavirin is the only treatment option to combat HCV. Alternative and more effective therapy is needed due to the severe side effects and unsatisfactory curing rate of the current therapy. In this study, we found that several polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) are able to exert anti-HCV activities using an HCV subgenomic RNA replicon system. The EC(50) (50% effective concentration to inhibit HCV replication) of AA was 4microM that falls in the range of physiologically relevant concentration. At 100microM, alpha-linolenic acid, gamma-linolenic, and linoleic acid only reduced HCV RNA levels slightly and saturated fatty acids including oleic acid, myristic acid, palmitic acid, and steric acid had no inhibitory activities toward HCV replication. When AA was combined with IFN-alpha, strong synergistic anti-HCV effect was observed as revealed by an isobologram analysis. It will be important to determine whether PUFAs can provide synergistic antiviral effects when given as food supplements during IFN-based anti-HCV therapy. Further elucidation of the exact anti-HCV mechanism caused by AA, DHA, and EPA may lead to the development of agents with potent activity against HCV or related viruses.  相似文献   

20.
Triggering and propagating an intracellular innate immune response is essential for control of viral infections. RNase L is a host endoribonuclease and a pivotal component of innate immunity that cleaves viral and cellular RNA within single-stranded loops releasing small structured RNAs with 5′-hydroxyl (5′-OH) and 3′-monophosphoryl (3′-p) groups. In 2007, we reported that RNase L cleaves self RNA to produce small RNAs that function as pathogen-associated molecular patterns (PAMPs). However, the precise sequence and structure of PAMP RNAs produced by RNase L is unknown. Here we used hepatitis C virus RNA as substrate to characterize RNase L mediated cleavage products [named suppressor of virus RNA (svRNA)] for their ability to activate RIG-I like receptors (RLR). The NS5B region of HCV RNA was cleaved by RNase L to release an svRNA that bound to RIG-I, displacing its repressor domain and stimulating its ATPase activity while signaling to the IFN-β gene in intact cells. All three of these RIG-I functions were dependent on the presence in svRNA of the 3′-p. Furthermore, svRNA suppressed HCV replication in vitro through a mechanism involving IFN production and triggered a RIG-I-dependent hepatic innate immune response in mice. RNase L and OAS (required for its activation) were both expressed in hepatocytes from HCV-infected patients, raising the possibility that the OAS/RNase L pathway might suppress HCV replication in vivo. It is proposed that RNase L mediated cleavage of HCV RNA generates svRNA that activates RIG-I, thus propagating innate immune signaling to the IFN-β gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号