首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single‐pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR–DOZI‐aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S‐transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore‐forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.  相似文献   

2.
Having entered the mature human erythrocyte, the malaria parasite survives and propagates within a parasitophorous vacuole, a membrane‐bound compartment separating the parasite from the host cell cytosol. The bounding membrane of this vacuole, referred to as the parasitophorous vacuolar membrane (PVM), contains parasite‐encoded proteins, but how these membrane proteins are trafficked to the PVM remains unknown. Here, we have studied the trafficking of PfExp1 to the PVM. We find that trafficking of PfExp1 to the PVM is independent of the folding state of the protein and also continues unabated upon inactivation of the PVM translocon Plasmodium Translocon of Exported proteins (PTEX). Our data strongly suggest that the trafficking of membrane proteins to the PVM occurs by as yet unknown mechanism, potentially unique to Plasmodium.  相似文献   

3.
Important components of the parasitophorous vacuole in which the intracellular protozoan parasite Toxoplasma gondii develops, comprise proteins secreted from apicomplexan specific secretory organelles named the dense granules. Here, we confirm by immunofluorescence and by cryo-electron microscopy that the recently isolated B10 protein (318 amino acids, 41kDa) is a new dense granule protein that should now be referred to as GRA9. Within the vacuolar compartment, GRA9, like GRA2, GRA4 and GRA6, associates with the network of tubular membranes connected to the parasitophorous vacuole delimiting membrane. Like the other GRA proteins, GRA9 is secreted into the vacuole from the anterior end of the parasite. However, unlike GRA2 or GRA6, GRA9 does not transit by the posterior invaginated pocket of the parasite where the network first assembles. Within the dense granules, GRA9 exists in both a soluble and an insoluble state. Like the other GRA proteins, GRA9 is secreted as a soluble form only and like most of the GRA proteins, two forms of GRA9 of the similar molecular weight are detected within the vacuolar space: a soluble form and a membrane associated form. The dual properties of GRA9 are not only ascribed by the presence of amphipathic and hydrophobic alpha-helices but also by the fact that the protein is mainly hydrophilic.  相似文献   

4.
Plasmodium falciparum malaria parasites export several hundred proteins to the cytoplasm of infected red blood cells (RBCs) to modify the cell environment suitable for their growth. A Plasmodium translocon of exported proteins (PTEX) is necessary for both soluble and integral membrane proteins to cross the parasitophorous vacuole (PV) membrane surrounding the parasite inside the RBC. However, the molecular composition of the translocation complex for integral membrane proteins is not fully characterized, especially at the parasite plasma membrane. To examine the translocation complex, here we used mini-SURFIN4.1, consisting of a short N-terminal region, a transmembrane region, and a cytoplasmic region of an exported integral membrane protein SURFIN4.1. We found that mini-SURFIN4.1 forms a translocation intermediate complex with core PTEX components, EXP2, HSP101, and PTEX150. We also found that several proteins are exposed to the PV space, including Pf113, an uncharacterized PTEX-associated protein. We determined that Pf113 localizes in dense granules at the merozoite stage and on the parasite periphery after RBC invasion. Using an inducible translocon-clogged mini-SURFIN4.1, we found that a stable translocation intermediate complex forms at the parasite plasma membrane and contains EXP2 and a processed form of Pf113. These results suggest a potential role of Pf113 for the translocation step of mini-SURFIN4.1, providing further insights into the translocation mechanisms for parasite integral membrane proteins.  相似文献   

5.
Cryptosporidium parvum is unable to synthesize fatty acids de novo, but possesses three long‐chain fatty acyl‐CoA synthetase (CpACS) isoforms for activating fatty acids. We have recently shown that these enzymes could be targeted to kill the parasite in vitro and in vivo. Here, we demonstrated that the CpACS genes were differentially expressed during the parasite life cycle, and their proteins were localized to different subcellular structures by immunofluorescence and immuno‐electron microscopies. Among them, CpACS1 displayed as an apical protein in sporozoites and merozoites, but no or little presence during the intracellular merogony until the release of merozoites, suggesting that CpACS1 probably functioned mainly during the parasite invasion and/or early stage of intracellular development. Both CpACS2 and CpACS3 proteins were present in all parasite life cycle stages, in which CpACS2 was present in the parasite and the parasitophorous vacuole membranes (PVM), whereas CpACS3 was mainly present in the parasite plasma membranes with little presence in the PVM. These observations suggest that CpACS2 and CpACS3 may participate in scavenging and transport of fatty acids across the PVM and the parasite cytoplasmic membranes, respectively.  相似文献   

6.
Molecular partitioning during host cell penetration by Toxoplasma gondii   总被引:1,自引:1,他引:0  
During invasion by Toxoplasma gondii, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole membrane (PVM) by the tight apposition of host and parasite cellular membranes. Previous studies suggested that the basis for the selective partitioning of membrane constituents may be a preference for membrane microdomains, and this hypothesis was herein tested. The partitioning of a diverse group of molecular reporters for raft and nonraft membrane subdomains was monitored during parasite invasion by time-lapse video or confocal microscopy. Unexpectedly, both raft and nonraft lipid probes, as well as both raft and nonraft cytosolic leaflet proteins, flowed unhindered past the host-parasite junction into the PVM. Moreover, neither a raft-associated type 1 transmembrane protein nor its raft-dissociated counterpart accessed the PVM, while a multispanning membrane raft protein readily did so. Considered together with previous data, these studies demonstrate that selective partitioning at the host-parasite interface is a highly complex process, in which raft association favors, but is neither necessary nor sufficient for, inclusion into the T. gondii PVM.  相似文献   

7.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

8.
To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA(+) ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ~600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.  相似文献   

9.
The human malaria parasite Plasmodium falciparum resides and multiplies within a membrane-bound vacuole in the cytosol of its host cell, the mature human erythrocyte. To enable the parasite to complete its intraerythrocytic life cycle, a large number of parasite proteins are synthesized and transported from the parasite to the infected cell. To gain access to the erythrocyte, parasite proteins must first cross the membrane of the parasitophorous vacuole (PVM), a process that is not well understood at the mechanistic level. Here, we review past and current literature on this topic, and make tentative predictions about the nature of the transport machinery required for transport of proteins across the PVM, and the molecular factors involved.  相似文献   

10.
Intracellular Plasmodium parasites develop inside a parasitophorous vacuole (PV), a specialised compartment enclosed by a membrane (PVM) that contains proteins of both host and parasite origin. Although exported protein 1 (EXP1) is one of the earliest described parasitic PVM proteins, its function throughout the Plasmodium life cycle remains insufficiently understood. Here, we show that whereas the N‐terminus of Plasmodium berghei EXP1 (PbEXP1) is essential for parasite survival in the blood, parasites lacking PbEXP1's entire C‐terminal (CT) domain replicate normally in the blood but cause less severe pathology than their wild‐type counterparts. Moreover, truncation of PbEXP1's CT domain not only impairs parasite development in the mosquito but also abrogates PbEXP1 localization to the PVM of intrahepatic parasites, severely limiting their replication and preventing their egress into the blood. Our findings highlight the importance of EXP1 during the Plasmodium life cycle and identify this protein as a promising target for antiplasmodial intervention.  相似文献   

11.
Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell’s physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins is processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite’s ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite’s ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite’s ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101’s specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte.  相似文献   

12.
Together with micronemes and rhoptries, dense granules are specialised secretory organelles of Apicomplexa parasites. Among Apicomplexa, Plasmodium represents a model of parasites propagated by way of an insect vector, whereas Toxoplasma is a model of food borne protozoa forming cysts. Through comparison of both models, this review summarises data accumulated over recent years on alternative strategies chosen by these parasites to develop within a parasitophorous vacuole and explores the role of dense granules in this process. One of the characteristics of the Plasmodium erythrocyte stages is to export numerous parasite proteins into both the host cell cytoplasm and/or plasma membrane via the vacuole used as a step trafficking compartment. Whether this feature can be correlated to few storage granules and a restricted number of dense granule proteins, is not yet clear. By contrast, the Toxoplasma developing vacuole is decorated by abundantly expressed dense granule proteins and is characterised by a network of membranous nanotubes. Although the exact function of most of these proteins remains currently unknown, recent data suggest that some of these dense granule proteins could be involved in building the intravacuolar membranous network. Conserved expression of the Toxoplasma dense granule proteins throughout most of the parasite stages suggests that they could also be key elements of the cyst formation.  相似文献   

13.
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.  相似文献   

14.
Plasmodium falciparum invades human red blood cells, residing in a parasitophorous vacuole (PV), with a parasitophorous vacuole membrane (PVM) separating the PV from the host cell cytoplasm. Here we have investigated the role of N-myristoylation and two other N-terminal motifs, a cysteine potential S-palmitoylation site and a stretch of basic residues, as the driving force for protein targeting to the parasite plasma membrane (PPM) and subsequent translocation across this membrane. Plasmodium falciparum adenylate kinase 2 (Pf AK2) contains these three motifs, and was previously proposed to be targeted beyond the parasite to the PVM, despite the absence of a signal peptide for entry into the classical secretory pathway. Biochemical and microscopy analyses of PfAK2 variants tagged with green fluorescent protein (GFP) showed that these three motifs are involved in targeting the protein to the PPM and translocation across the PPM to the PV. It was shown that the N-terminal 37 amino acids of PfAK2 alone are sufficient to target and translocate GFP across the PPM. As a control we examined the N-myristoylated P. falciparum ADP-ribosylation factor 1 (PfARF1). PfARF1 was found to co-localise with a Golgi marker. To determine whether or not the putative palmitoylation and the cluster of lysine residues from the N-terminus of PfAK2 would modulate the subcellular localization of PfARF1, a chimeric fusion protein containing the N-terminus of PfARF1 and the two additional PfAK2 motifs was analysed. This chimeric protein was targeted to the PPM, but not translocated across the membrane into the PV, indicating that other features of the N-terminus of PfAK2 also play a role in the secretion process.  相似文献   

15.
Escape from the host erythrocyte by the invasive stage of the malaria parasite Plasmodium falciparum is a fundamental step in the pathogenesis of malaria of which little is known. Upon merozoite invasion of the host cell, the parasite becomes enclosed within a parasitophorous vacuole, the compartment in which the parasite undergoes growth followed by asexual division to produce 16-32 daughter merozoites. These daughter cells are released upon parasitophorous vacuole and erythrocyte membrane rupture. To examine the process of merozoite release, we used P. falciparum lines expressing green fluorescent protein-chimeric proteins targeted to the compartments from which merozoites must exit: the parasitophorous vacuole and the host erythrocyte cytosol. This allowed visualization of merozoite release in live parasites. Herein we provide the first evidence in live, untreated cells that merozoite release involves a primary rupture of the parasitophorous vacuole membrane followed by a secondary rupture of the erythrocyte plasma membrane. We have confirmed, with the use of immunoelectron microscopy, that parasitophorous vacuole membrane rupture occurs before erythrocyte plasma membrane rupture in untransfected wild-type parasites. We have also demonstrated selective inhibition of each step in this two-step process of exit using different protease inhibitors, implicating the involvement of distinct proteases in each of these steps. This will facilitate the identification of the parasite and host molecules involved in merozoite release.  相似文献   

16.
The intracellular parasite Toxoplasma gondii resides within a specialized compartment, the parasitophorous vacuole (PV), that resists fusion with host cell endocytic and lysosomal compartments. The PV is extensively modified by secretion of parasite proteins, including the dense granule protein GRA5 that is specifically targeted to the delimiting membrane of the PV (PVM). We show here that GRA5 is present both in a soluble form and in hydrophobic aggregates. GRA5 is secreted as a soluble form into the PV after which it becomes stably associated with the PVM. Topological studies demonstrated that GRA5 was inserted into the PVM as a transmembrane protein with its N-terminal domain extending into the cytoplasm and its C terminus in the vacuole lumen. Deletion of 8 of the 18 hydrophobic amino acids of the single predicted transmembrane domain resulted in the failure of GRA5 to associate with the PVM; yet it remained correctly packaged in the dense granules and was secreted as a soluble protein into the PV. Collectively, these studies demonstrate that the secretory pathway in Toxoplasma is unusual in two regards; it allows soluble export of proteins containing typical transmembrane domains and provides a mechanism for their insertion into a host cell membrane after secretion from the parasite.  相似文献   

17.
The inner membrane complex and the apical secretory organelles are defining features of apicomplexan parasites. Despite their critical roles, the mechanisms behind the biogenesis of these structures in the malaria parasite Plasmodium falciparum are still poorly defined. We here show that decreasing expression of the P. falciparum homologue of the conserved endolysomal escorter Sortilin‐VPS10 prevents the formation of the inner membrane complex and abrogates the generation of new merozoites. Moreover, protein trafficking to the rhoptries, the micronemes, and the dense granules is disrupted, which leads to the accumulation of apical complex proteins in the endoplasmic reticulum and the parasitophorous vacuole. We further show that protein export to the erythrocyte and transport through the constitutive secretory pathway are functional. Taken together, our results suggest that the malaria parasite P. falciparum Sortilin has potentially broader functions than most of its other eukaryotic counterparts.  相似文献   

18.
Egress of Plasmodium falciparum merozoites from host erythrocytes is a critical step in multiplication of blood‐stage parasites. A cascade of proteolytic events plays a major role in degradation of membranes leading to egress of merozoites. However, the signals that regulate the temporal activation and/or secretion of proteases upon maturation of merozoites in intra‐erythrocytic schizonts remain unclear. Here, we have tested the role of intracellular Ca2+ in regulation of egress of P. falciparum merozoites from schizonts. A sharp rise in intracellular Ca2+ just before egress, observed by time‐lapse video microscopy, suggested a role for intracellular Ca2+ in this process. Chelation of intracellular Ca2+ with chelators such as BAPTA‐AM or inhibition of Ca2+ release from intracellular stores with a phospholipase C (PLC) inhibitor blocks merozoite egress. Interestingly, chelation of intracellular Ca2+ in schizonts was also found to block the discharge of a key protease PfSUB1 (subtilisin‐like protease 1) from exonemes of P. falciparum merozoites to parasitophorous vacuole (PV). This leads to inhibition of processing of PfSERA5 (serine repeat antigen 5) and a block in parasitophorous vacuolar membrane (PVM) rupture and merozoite egress. A complete understanding of the steps regulating egress of P. falciparum merozoites may provide novel targets for development of drugs that block egress and limit parasite growth.  相似文献   

19.
The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium‐associated autophagy‐related (PAAR) response. This is characterised by a long‐lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3‐phosphate (PI3P)‐labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P‐labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3‐labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.  相似文献   

20.
After invasion of erythrocytes, the human malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole and develops from morphologically and metabolically distinct ring to trophozoite stages. During these developmental phases, major structural changes occur within the erythrocyte, but neither the molecular events governing this development nor the molecular composition of the parasitophorous vacuole membrane (PVM) is well known. Herein, we describe a new family of highly cationic proteins from P. falciparum termed early transcribed membrane proteins (ETRAMPs). Thirteen members were identified sharing a conserved structure, of which six were found only during ring stages as judged from Northern and Western analysis. Other members showed different stage-specific expression patterns. Furthermore, ETRAMPs were associated with the membrane fractions in Western blots, and colocalization and selective permeabilization studies demonstrated that ETRAMPs were located in the PVM. This was confirmed by immunoelectron microscopy where the PVM and tubovesicular extensions of the PVM were labeled. Early expressed ETRAMPs clearly defined separate PVM domains compared with the negatively charged integral PVM protein EXP-1, suggesting functionally different domains in the PVM with an oppositely charged surface coat. We also show that the dynamic change of ETRAMP composition in the PVM coincides with the morphological changes during development. The P. falciparum PVM is an important structure for parasite survival, and its analysis might provide better understanding of the requirements of intracellular parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号