首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial-specific lipid cardiolipin (CL) is required for numerous processes therein. After its synthesis on the matrix-facing leaflet of the inner membrane (IM), CL undergoes acyl chain remodeling to achieve its final form. In yeast, this process is completed by the transacylase tafazzin, which associates with intermembrane space (IMS)-facing membrane leaflets. Mutations in TAZ1 result in the X-linked cardiomyopathy Barth syndrome. Amazingly, despite this clear pathophysiological association, the physiological importance of CL remodeling is unresolved. In this paper, we show that the lipase initiating CL remodeling, Cld1p, is associated with the matrix-facing leaflet of the mitochondrial IM. Thus monolysocardiolipin generated by Cld1p must be transported to IMS-facing membrane leaflets to gain access to tafazzin, identifying a previously unknown step required for CL remodeling. Additionally, we show that Cld1p is the major site of regulation in CL remodeling; and that, like CL biosynthesis, CL remodeling is augmented in growth conditions requiring mitochondrially produced energy. However, unlike CL biosynthesis, dissipation of the mitochondrial membrane potential stimulates CL remodeling, identifying a novel feedback mechanism linking CL remodeling to oxidative phosphorylation capacity.  相似文献   

2.
3.
The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p as a tool to modulate the cellular acyl chain content. Despite the presence of an intact CL remodeling system, acyl chains shorter than 16 carbon atoms (C16) were found to accumulate in CL in cells lacking Acb1p. Further experiments revealed that Taz1p, a key CL remodeling enzyme, was not responsible for the shortening of CL in the absence of Acb1p. This left de novo CL synthesis as the only possible source of acyl chains shorter than C16 in CL. Experiments in which the substrate specificity of the yeast cardiolipin synthase Crd1p and the acyl chain composition of individual short CL species were investigated, indicated that both CL precursors (i.e. phosphatidylglycerol and CDP-diacylglycerol) contribute to comparable extents to the shorter acyl chains in CL in acb1 mutants. Based on the findings, we conclude that the fatty acid composition of mature CL in yeast is governed by the substrate specificity of the CL-specific lipase Cld1p and the fatty acid composition of the Taz1p substrates.Cardiolipin (CL)5 is a unique anionic glycerophospholipid with dimeric structure containing four acyl chains, which is almost exclusively localized to the mitochondrial inner membrane in eukaryotic cells (1, 2). CL has been shown to co-isolate with, and to be required for optimal activity of a number of enzymes in the respiratory chain (35), and it has been implicated in the stability and assembly of protein (super)complexes (68). In the presence of divalent cations and dependent on the acyl chain composition, CL has a propensity for membrane negative curvature, a property that may be important in, e.g. membrane fusion and fission (9, 10). In addition, CL is thought to serve as a proton trap in oxidative phosphorylation (11). In recent years, CL has also been implicated in apoptosis (12, 13).CL is synthesized in the inner mitochondrial membrane by condensation of PG and CDP-DAG, catalyzed by the cardiolipin synthase Crd1p (see Fig. 1; reviewed in Ref. 4). Compared with the other phospholipid classes, CL is enriched in unsaturated acyl chains, and the molecular species of CL possess a high degree of molecular symmetry (14). The CL-specific acyl chain pattern originates from substrate preferences during biosynthesis and subsequent remodeling by acyl chain exchange (15). The finding of an aberrant CL species profile in patients suffering from Barth syndrome, which results from mutations in the tafazzin gene (16), revealed the importance of CL remodeling, and set the stage for the identification of tafazzin as the acyltransferase involved (17, 18). The Drosophila homologue of tafazzin was shown to be a CoA-independent phospholipid transacylase with substrate preference for CL and PC (19).Open in a separate windowFIGURE 1.The cardiolipin biosynthetic pathway in the context of phospholipid biosynthesis in yeast. The enzymes of the CL biosynthetic pathway identified at the gene level are indicated: Cds1p, CDP-DAG synthase; Pgs1p, phosphatidylglycerolphosphate synthase; Crd1p, CL synthase; Taz1p, Tafazzin; Cld1p, CL-specific deacylase.The biosynthesis and remodeling of CL have been extensively studied in the yeast Saccharomyces cerevisiae. After synthesis by Crd1p, CL is subject to deacylation and reacylation, which involves the yeast homologue of tafazzin encoded by the TAZ1 gene. The yeast taz1 mutant has defects similar to those found in Barth syndrome, including reduced CL content, an aberrant CL species profile, and an accumulation of monolyso-CL (20). The bioenergetic coupling of isolated mitochondria from a taz1 mutant is compromised (21), which may be accounted for by the impaired assembly of the III2IV2 supercomplex (22). Recently, the CL-specific phospholipase Cld1p was identified, which functions upstream of Taz1p (23).Because the acyl chain composition of CL is important for its function, we investigated how the molecular species profile of CL is attained by using depletion of the 10-kDa cytosolic acyl-CoA-binding protein Acb1p as a tool to modify the cellular acyl chain content. Deletion of the ACB1 gene increases the cellular levels of C14 and C16 fatty acids at the expense of C18, without having adverse effects on cell growth or on the rate of glycerophospholipid synthesis (2426). The changes in fatty acid composition are reflected to varying extents in the molecular species profile of phospholipids in Acb1p-depleted cells as determined by electrospray ionization-mass spectrometry (ESI-MS) (27, 28). We first determined by mass spectrometry that in the absence of Acb1p acyl chains shorter than C16 accumulate in CL as in the other phospholipid classes despite the Cld1p-Taz1p remodeling system. Using appropriate mutants and analysis by mass spectrometry, we investigated two possible origins of the shorter acyl chains in CL: (i) remodeling by Taz1p and (ii) de novo synthesis of CL from PG and CDP-DAG.  相似文献   

4.
Cardiolipin (CL) is an essential phospholipid component of the inner mitochondrial membrane. In the mammalian heart, the functional form of CL is tetralinoleoyl CL [(18:2)4CL]. A decrease in (18:2)4CL content, which is believed to negatively impact mitochondrial energetics, occurs in heart failure (HF) and other mitochondrial diseases. Presumably, (18:2)4CL is generated by remodeling nascent CL in a series of deacylation-reacylation cycles; however, our overall understanding of CL remodeling is not yet complete. Herein, we present a novel cell culture method for investigating CL remodeling in myocytes isolated from Spontaneously Hypertensive HF rat hearts. Further, we use this method to examine the role of calcium-independent phospholipase A2 (iPLA2) in CL remodeling in both HF and nonHF cardiomyocytes. Our results show that 18:2 incorporation into (18:2)4CL is: a) performed singly with respect to each fatty acyl moiety, b) attenuated in HF relative to nonHF, and c) partially sensitive to iPLA2 inhibition by bromoenol lactone. These results suggest that CL remodeling occurs in a step-wise manner, that compromised 18:2 incorporation contributes to a reduction in (18:2)4CL in the failing rat heart, and that mitochondrial iPLA2 plays a role in the remodeling of CL''s acyl composition.  相似文献   

5.
Cardiolipin (CL) is a phospholipid predominantly found in the mitochondrial inner membrane and is associated structurally with individual complexes of the electron transport chain (ETC). Because the ETC is the major mitochondrial reactive oxygen species (ROS)-generating site, the proximity to the ETC and bisallylic methylenes of the PUFA chains of CL make it a likely target of ROS in the mitochondrial inner membrane. Oxidized cellular CL products, uniquely derived from ROS-induced autoxidation, could serve as biomarkers for the presence of the ROS and could help in the understanding of the mechanism of oxidative stress. Because major CL species have four unsaturated acyl chains, whereas other phospholipids usually have only one in the sn-2 position, characterization of oxidized CL is highly challenging. In the current study, we exposed CL, under aerobic conditions, to singlet oxygen (1O2), the radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride, or room air, and the oxidized CL species were characterized by HPLC-tandem mass spectrometry (MS/MS). Our reverse-phase ion-pair HPLC-MS/MS method can characterize the major and minor oxidized CL species by detecting distinctive fragment ions associated with specific oxidized species. The HPLC-MS/MS results show that monohydroperoxides and bis monohydroperoxides were generated under all three conditions. However, significant amounts of CL dihydroperoxides were produced only by 1O2-mediated oxidation. These products were barely detectable from radical oxidation either in a liposome bilayer or in thin film. These observations are only possible due to the chromatographic separation of the different oxidized species.  相似文献   

6.
Esterifying lysophospholipids may serve a variety of functions, including phospholipid remodeling and limiting the abundance of bioactive lipids. Recently, a yeast enzyme, Lpt1p, that esterifies an array of lysophospholipids was identified. Described here is the characterization of a human homolog of LPT1 that we have called lysophosphatidylcholine acyltransferase 3 (LPCAT3). Expression of LPCAT3 in Sf9 insect cells conferred robust esterification of lysophosphatidylcholine in vitro. Kinetic analysis found apparent cooperativity with a saturated acyl-CoA having the lowest K0.5 (5 μM), a monounsaturated acyl-CoA having the highest apparent Vmax (759 nmol/min/mg), and two polyunsaturated acyl-CoAs showing intermediate values. Lysophosphatidylethanolamine and lysophosphatidylserine were also utilized as substrates. Electrospray ionization mass spectrometric analysis of phospholipids in Sf9 cells expressing LPCAT3 showed a relative increase in phosphatidylcholine containing saturated acyl chains and a decrease in phosphatidylcholine containing unsaturated acyl chains. Targeted reduction of LPCAT3 expression in HEK293 cells had essentially an opposite effect, resulting in decreased abundance of saturated phospholipid species and more unsaturated species. Reduced LPCAT3 expression resulted in more apoptosis and distinctly fewer lamellipodia, suggesting a necessary role for lysophospholipid esterification in maintaining cellular function and structure.  相似文献   

7.
The role of cardiolipin acyl chain composition in assembly/stabilization of mitochondrial complexes was investigated using three yeast deletion mutants (acb1Δ strain; taz1Δ strain; and acb1Δtaz1Δ strain). Deletion of the TAZ1 gene, involved in cardiolipin acyl chain remodeling, is known to increase the content of monolyso-cardiolipin (MLCL) at the expense of CL, and to decrease the unsaturation of the remaining CL. Deletion of the ACB1 gene encoding the acyl-CoA-binding protein, involved in fatty acid elongation, decreases the average length of the CL acyl chains. Furthermore, a TAZ1ACB1 double deletion mutant strain was used in this study which has both a decrease in the length of the CL acyl chains and an increase in MLCL. BN/SDS PAGE analysis revealed that cardiolipin is important for the prohibitin–m-AAA protease complex, the α-ketoglutarate dehydrogenase complex and respiratory chain supercomplexes. The results indicate that the decreased level of complexes in taz1Δ and acb1Δtaz1Δ mitochondria is due to a decreased content of CL or the presence of MLCL.  相似文献   

8.
At the pyruvate branch point, the fermentative and oxidative metabolic routes diverge. Pyruvate can be transformed either into lactate in mammalian cells or into ethanol in yeast, or transported into mitochondria to fuel ATP production by oxidative phosphorylation. The recently discovered mitochondrial pyruvate carrier (MPC), encoded by MPC1, MPC2, and MPC3 in yeast, is required for uptake of pyruvate into the organelle. Here, we show that while expression of Mpc1 is not dependent on the carbon source, expression of Mpc2 and Mpc3 is specific to fermentative or respiratory conditions, respectively. This gives rise to two alternative carrier complexes that we have termed MPCFERM and MPCOX. By constitutively expressing the two alternative complexes in yeast deleted for all three endogenous genes, we show that MPCOX has a higher transport activity than MPCFERM, which is dependent on the C‐terminus of Mpc3. We propose that the alternative MPC subunit expression in yeast provides a way of adapting cellular metabolism to the nutrient availability.  相似文献   

9.
Oxidative stress acts as a pathogenetic factor in many diseases; estimating its level is important for early diagnosis and therapy adjustment. The antioxidant status was evaluated for the blood plasma. A set of chemiluminescence (CL) kinetic-curve parameters (latent period τlat and analytical signal increment ΔICL) in a 2,2’-azo-bis(2-amidinopropane)dihydrochloride–luminol system were proposed for estimating the oxidative stress level. Uric acid and albumin were identified as major components that are responsible for the changes in the plasma CL kinetic curve. UV light caused oxidative modification of serum albumin in a dose-dependent manner, thus enhancing its antioxidant properties. Changes in plasma CL kinetics were proposed as a means to measure oxidative stress in the human body.  相似文献   

10.
Orexin 1 receptor (OX1R) is thought to be involved in various body functions, including arousal maintenance and emotional control, but the full details of its function remain unknown. OX1R imaging with positron emission tomography (PET) would be useful in elucidating the orexin system including OX1R, but no PET probes targeting OX1R have been reported. We, therefore, designed and synthesized tetrahydroisoquinoline (THIQ) derivatives as novel PET probes targeting OX1R, and evaluated their utility. In an in vitro competitive binding assay, THIQ-1 and THIQ-2 showed significantly higher binding to OX1R (IC50 = 30 and 31 nM, respectively) than OX2R (IC50 = 160 and 332 nM, respectively). These features were also observed in a cell binding assay using [18F]THIQ-1 and [18F]THIQ-2, demonstrating their OX1R-specific binding property in vitro. In a biodistribution study using normal mice, the brain uptake of [18F]THIQ-1 was higher than that of [18F]THIQ-2, but further improvement is required for in vivo imaging with PET. Taken together, [18F]THIQ-1 and [18F]THIQ-2 have the potential to become useful imaging probes for PET targeting the OX1R, but require additional structural changes to improve their brain uptake.  相似文献   

11.
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.  相似文献   

12.
Mitochondrial cardiolipin undergoes extensive remodeling of its acyl groups to generate uniformly substituted species, such as tetralinoleoyl-cardiolipin, but the mechanism of this remodeling has not been elucidated, except for the fact that it requires tafazzin. Here we show that purified recombinant Drosophila tafazzin exchanges acyl groups between cardiolipin and phosphatidylcholine by a combination of forward and reverse transacylations. The acyl exchange is possible in the absence of phospholipase A2 because it requires only trace amounts of lysophospholipids. We show that purified tafazzin reacts with various phospholipid classes and with various acyl groups both in sn-1 and sn-2 position. Expression studies in Sf9 insect cells suggest that the effect of tafazzin on cardiolipin species is dependent on the cellular environment and not on enzymatic substrate specificity. Our data demonstrate that tafazzin catalyzes general acyl exchange between phospholipids, which raises the question whether pattern formation in cardiolipin is the result of the equilibrium distribution of acyl groups between multiple phospholipid species.  相似文献   

13.
In eukaryotic cells, the acyl species of the phospholipid cardiolipin (CL) are more highly unsaturated than those of the other membrane phospholipids. Defective acylation of CL with unsaturated fatty acids and decreased total CL are associated with Barth syndrome, an X-linked cardio- and skeletal myopathy attributed to a defect in the gene G4.5 (also known as tafazzin). We constructed a yeast mutant (taz1) containing a null mutation in the homologue of the human G4.5 gene. The yeast taz1Delta mutant was temperature sensitive for growth in ethanol as sole carbon source, but grew normally on glucose or glycerol plus ethanol. Total CL content was reduced in the taz1Delta mutant, and monolyso-CL accumulated. The predominant CL acyl species found in wild-type cells, C18:1 and C16:1, were markedly reduced in the mutant, whereas CL molecules containing saturated fatty acids were present. Interestingly, CL synthesis increased in the mutant, whereas expression of the CL structural genes CRD1 and PGS1 did not, suggesting that de novo biosynthetic enzyme activities are regulated by CL acylation. These results indicate that the taz1Delta mutant is an excellent genetic tool for the study of CL remodelling and may serve as a model system for the study of Barth syndrome.  相似文献   

14.
A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of 13C-labeled diC8PC ((methyl-13C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-13C)3-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.  相似文献   

15.
The morphinan-type orexin 1 receptor (OX1R) antagonists such as YNT-707 (2) and YNT-1310 (3) show potent and extremely high selective antagonistic activity against OX1R. In the course of our studies of the essential structure of 2, we identified new scaffolds by simplification of the morphinan skeleton. However, the new chemical entities carrying the D-ring removed scaffold showed insufficient activity. To improve the activity of these derivatives, we investigated the effect of substituents mainly focused on the 17-nitrogen group. The 17-N-substituted derivatives, as well as the cyclic derivatives, were synthesized and examined the OX1R antagonistic activity. The assay results showed the interesting relationship between the OX1R antagonistic activity and the substituents on the 17-nitrogen: the antagonistic activity was increased as the bulkiness of 17-substituents increased. Finally, the 17-N-Boc derivative 14a showed the most potent OX1R antagonistic activity (Ki = 14.8 nM).  相似文献   

16.
17.
The bilayer phase transitions of six kinds of mixed-chain phosphatidylcholines (PCs) with an unsaturated acyl chain in the sn-1 or sn-2 position, 1-oleoyl-2-stearoyl- (OSPC), 1-stearoyl-2-oleoyl- (SOPC), 1-oleoyl-2-palmitoyl- (OPPC), 1-palmitoyl-2-oleoyl- (POPC), 1-oleoyl-2-myristoyl- (OMPC) and 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light transmittance measurements. Bilayer membranes of SOPC, POPC and MOPC with an unsaturated acyl chain in the sn-2 position exhibited only one phase transition, which was identified as the main transition between the lamellar gel (Lβ) and liquid crystalline (Lα) phases. On the other hand, the bilayer membranes of OSPC, OPPC and OMPC with an unsaturated acyl chain in the sn-1 position exhibited not only the main transition but also a transition from the lamellar crystal (Lc) to the Lβ (or Lα) phase. The stability of their gel phases was markedly affected by pressure and chain length of the saturated acyl chain in the sn-2 position. Considering the effective chain lengths of unsaturated mixed-chain PCs, the difference in the effective chain length between the sn-1 and sn-2 acyl chains was proven to be closely related to the temperature difference of the main transition. That is, a mismatch of the effective chain length promotes a temperature difference of the main transition between the positional isomers. Anomalously small volume changes of the Lc/Lα transition for the OPPC and OMPC bilayers were found despite their large enthalpy changes. This behavior is attributable to the existence of a cis double bond and to significant inequivalence between the sn-1 and sn-2 acyl chains, which brings about a small volume change for chain melting due to loose chain packing, corresponding to a large partial molar volume, even in the Lc phase. Further, the bilayer behavior of unsaturated mixed-chain PCs containing an unsaturated acyl chain in the sn-1 or sn-2 position was well explained by the chemical-potential diagram of a lipid in each phase.  相似文献   

18.
The D-nor-nalfurafine derivatives, which were synthesized by contraction of the six-membered D-ring in nalfurafine (1), had no affinity for orexin 1 receptors (OX1Rs). The 17N-lone electron pair in 1 oriented toward the axial direction, while that of D-nor-derivatives was directed in the equatorial configuration. The axial lone electron pair can form a hydrogen bond with the 14-hydroxy group, which could push the 6-amide side chain toward the downward direction with respect to the C-ring. The resulting conformation would be an active conformation for binding with OX1R. The dual affinities of 1 for OX1R and κ opioid receptor (KOR) led us to elucidate the mechanism by which only 1 showed no aversion but U-50488H. Actually, 1 selectively induced severe aversion in OX1R knockout mice, but not in wild-type mice. These results well support that OX1R suppresses the aversion of 1. This is the elucidation of long period puzzle which 1 showed no aversion in KOR.  相似文献   

19.
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.

The inositol deacylase AtPGAP1 mediates the first step of glycosylphosphatidylinositol (GPI) anchor-lipid remodeling and is required for efficient transport of GPI-anchored proteins  相似文献   

20.
In plants, chalcones are precursors for a large number of flavonoid-derived plant natural products and are converted to flavanones by chalcone isomerase or nonenzymatically. Chalcones are synthesized from tyrosine and phenylalanine via the phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL), and chalcone synthase (CHS). For the purpose of production of flavanones in Escherichia coli, three sets of an artificial gene cluster which contained three genes of heterologous origins—PAL from the yeast Rhodotorula rubra, 4CL from the actinomycete Streptomyces coelicolor A3(2), and CHS from the licorice plant Glycyrrhiza echinata—were constructed. The constructions of the three sets were done as follows: (i) PAL, 4CL, and CHS were placed in that order under the control of the T7 promoter (PT7) and the ribosome-binding sequence (RBS) in the pET vector, where the initiation codons of 4CL and CHS were overlapped with the termination codons of the preceding genes; (ii) the three genes were transcribed by a single PT7 in front of PAL, and each of the three contained the RBS at appropriate positions; and (iii) all three genes contained both PT7 and the RBS. These pathways bypassed C4H, a cytochrome P-450 hydroxylase, because the bacterial 4CL enzyme ligated coenzyme A to both cinnamic acid and 4-coumaric acid. E. coli cells containing the gene clusters produced two flavanones, pinocembrin from phenylalanine and naringenin from tyrosine, in addition to their precursors, cinnamic acid and 4-coumaric acid. Of the three sets, the third gene cluster conferred on the host the highest ability to produce the flavanones. This is a new metabolic engineering technique for the production in bacteria of a variety of compounds of plant and animal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号