首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This experiment was carried out to examine the influence of overfeeding ducks with corn on the lipid composition of hepatocyte plasma membrane. Seventy-day-old male Mule ducks (Cairina moschata × Anas platyrhynchos) were overfed with corn for 12.5 days in order to induce fatty livers. The cholesterol and phospholipid contents were approximately 50% higher in hepatocyte plasma membranes from fatty livers compared to those of lean livers obtained from non-overfed ducks. However, the cholesterol/phospholipids molar ratio did not differ between both groups. Overfeeding induced a significant change in phospholipid composition of hepatocyte plasma membrane with a decrease in phosphatidylcholine proportion and conversely an increase in phosphatidylethanolamine. The fatty acid profile of phospholipids was also altered. In fatty hepatocyte plasma membrane, the overall proportion of polyunsaturated fatty acids (PUFA) was decreased and this was due to the decrease of some of, but not all, the PUFA. In addition, the proportions of oleic acid and n-9 series unsaturated fatty acids were higher in fatty than in lean liver membranes. This study provides evidence that overfeeding with a carbohydrate-rich corn-based diet induces a de novo hepatic lipogenesis in Mule duck which predominates over dietary lipid intake to change the lipid composition of the hepatocyte plasma membrane.  相似文献   

2.
Human plasma prekallikrein, precursor of the bradykinin-generating enzyme, was activated in a purified system under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37°C) by Pseudomonas aeruginosa elastase which is a tissue-destructive metalloproteinase. Compared with that, Pseudomonas aeruginosa alkaline proteinase poorly activated it with a rate as low as less than one-twentieth of that of elastate. The activation by elastase was blocked with a specific inhibitor of elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2 (10 μM). Generation of kallikrein-like amidolytic activity was also observed in plasma deficient in Hageman factor by treatment with elastase, but was not in plasma deficient in prekallikrein. The kallikrein-like activity generated in Hageman factor deficient plasma as well as the generation process itself was indeed inhibited by antihuman prekallikrein goat antibody. These results suggest that the pathological activation of the kallikrein-kinin system might occur under certain clinical conditions in pseudomonal infections.  相似文献   

3.
Pulmonary complications often accompany the development of acute peritonitis. In this study, we analyzed the alterations of alveolar surfactant phospholipids in rats with experimentally induced peritonitis. The results showed a reduction of almost all phospholipid fractions in pulmonary surfactant of experimental animals. The most abundant alveolar phospholipids-phosphatidylcholine and phosphatidylglycerol were reduced significantly in surfactant of rats with experimental peritonitis. In addition, analysis of the fatty acid composition of these two phospholipids revealed marked differences between experimental and control animals. The activity of phospholipase A2, which is localized in the hydrophyllic phase of alveolar surfactant, was higher in rats with experimental peritonitis compared to sham-operated ones. Also, a weak acyl-CoA:lysophospholipid acyltransferase activity was detected in alveolar surfactant of rats with experimental peritonitis, whereas in control animals this activity was not detectable. The lipid-transfer activity was quite similar in pulmonary surfactant of control and experimental rats. The total number of cells and the percentage of neutrophils were strongly increased in broncho-alveolar lavage fluid from rats with peritonitis. Thus, our results showed that the development of peritonitis was accompanied by pulmonary pathophysiological processes that involved alterations of the phospholipid and fatty acid composition of alveolar surfactant. We suggest that the increased populations of inflammatory cells, which basically participate in internalization and secretion of surfactant components, contributed to the observed alterations of alveolar phospholipids. These studies would be useful for clarification of the pathogenic mechanisms underlying the occurrence of pulmonary disorders that accompany acute inflammatory conditions, such as peritonitis and sepsis.  相似文献   

4.

Aims

Excessive use of antibiotics has led to evolutionary adaptation resulting in emergence of multidrug resistance in P. aeruginosa. The aim of the present study was oriented towards exploiting zingerone (active component of ginger) in making P. aeruginosa more susceptible to killing with antibiotics, humoral/cellular defences and studying its underlying mechanism.

Main method

Effect of zingerone treatment on antibiotic susceptibility, serum, and phagocytic killing of P. aeruginosa was studied. The underlying mechanism was evaluated in terms of cell surface hydrophobicity, alginate and LPS production. TNF-α and MIP-2 cytokine production by mouse macrophages was also checked. Structural analysis was carried out using scanning electron microscopy (SEM) and liquid chromatography-mass spectrometry (LC-MS) analysis.

Key findings

Zingerone treated cells showed increased susceptibility to variety of antibiotics, serum as well as macrophages (p < 0.05). Zingerone treatment significantly reduced cell surface hydrophobicity, alginate and LPS production (p < 0.05). Zingerone treated cells showed significant decrease in TNF-α and MIP-2 cytokine production as compared to non-treated cells. Coupled with this, reduction in the production of extracellular protective matrix and modulation of chemical structure of LPS was also observed by scanning electron microscopy and liquid chromatography-mass spectrometric (LC-MS) respectively. Zingerone significantly influence surface structure of P. aeruginosa which contributes towards enhanced susceptibility to antibiotics and innate immune system.

Significance

Use of phytochemicals may prove to be a novel therapeutic approach by enhancing susceptibility of pathogenic microorganisms to antibiotics and immune system. Zingerone has proved to be one such agent which can be employed as a potential anti-virulent drug candidate against P. aeruginosa infections.  相似文献   

5.
Octadecenoic (18:1) trans-fatty acid fractions from margarine, butter and plasma phospholipids (PL) were isolated by silver ion TLC, and nine positional isomers (n-11-n-3) were identified by GC-MS based on their ozonolysis products. The GC analysis of the isolated fractions gave similar peak profiles and separated seven trans-isomers (n-11-n-6 and n-3). Without a preceding isolation step, the reproducibility of the Gc method for plasma PL elaidic (18:1 n-9 trans) and trans-vaccenic acids (n-7) was 3.4 and 2.7% (R.S.D.), respectively. These trans-isomers were rapidly incorporated and cleared in plasma PL and they closely reflected both increased and decreased intake of 18:1 trans-fatty acids during moderate fat substitutions. Significant associations between high-density lipoprotein cholesterol (HDL-C) and PL elaidic and trans-vaccenic acids appeared in habitual margarine users only.  相似文献   

6.
Balázs Rada 《FEBS letters》2010,584(5):917-881
Hydrogen peroxide production by the NADPH oxidase Duox1 occurs during activation of respiratory epithelial cells stimulated by purified bacterial ligands, such as lipopolysaccharide. Here, we characterize Duox activation using intact bacterial cells of several airway pathogens. We found that only Pseudomonas aeruginosa, not Burkholderia cepacia or Staphylococcus aureus, triggers H2O2 production in bronchial epithelial cells in a calcium-dependent but predominantly ATP-independent manner. Moreover, by comparing mutant Pseudomonas strains, we identify several virulence factors that participate in Duox activation, including the type-three secretion system. These data provide insight on Duox activation by mechanisms unique to P. aeruginosa.  相似文献   

7.
Bacterial proteins of the FadL family have frequently been associated to the uptake of exogenous hydrophobic substrates. However, their outer membrane location and involvement in substrate uptake have been inferred mainly from sequence similarity to Escherichia coli FadL, the first well-characterized outer membrane transporters of Long-Chain Fatty Acids (LCFAs) in bacteria. Here we report the functional characterization of a Pseudomonas aeruginosa outer membrane protein (ORF PA1288) showing similarities to the members of the FadL family, for which we propose the name ExFadLO. We demonstrate herein that this protein is required to export LCFAs 10-HOME and 7,10-DiHOME, derived from a diol synthase oxygenation activity on oleic acid, from the periplasm to the extracellular medium. Accumulation of 10-HOME and 7,10-DiHOME in the extracellular medium of P. aeruginosa was abolished by a transposon insertion mutation in exFadLO (ExFadLO¯ mutant). However, intact periplasm diol synthase activity was found in this mutant, indicating that ExFadLO participates in the export of these oxygenated LCFAs across the outer membrane. The capacity of ExFadLO¯ mutant to export 10-HOME and 7,10-DiHOME was recovered after complementation with a wild-type, plasmid-expressed ExFadLO protein. A western blot assay with a variant of ExFadLO tagged with a V5 epitope confirmed the location of ExFadLO in the bacterial outer membrane under the experimental conditions tested. Our results provide the first evidence that FadL family proteins, known to be involved in the uptake of hydrophobic substrates from the extracellular environment, also function as secretion elements for metabolites of biological relevance.  相似文献   

8.
During a search for glucose-regulated abundant mRNAs in the diabetic rat kidney, we cloned thyroid hormone binding protein (THBP), also known as μ-crystallin or CRYM. The aim of this study was to investigate the effect of hyperglycemia/high glucose on the expression of THBP. THBP mRNA copy numbers were determined in kidneys and hearts of diabetic GK rats vs normoglycemic Wistar rats, and in human mesangial cells (HMCs) exposed to high glucose using real-time qPCR, and THBP protein levels were measured by Western blotting and immunofluorescence. Intracellular ROS was measured in THBP transfected cells using DCF fluorescence. Hyperglycemia significantly increased THBP mRNA in GK rat kidneys (326 ± 50 vs 147 ± 54, p < 0.05), and hearts (1583 ± 277 vs 191 ± 63, p < 0.05). Moreover, the levels of THBP mRNA increased with age and hyperglycemia in GK rat kidneys, whereas in normoglycemic Wistar rat kidneys there was a decline with age. High glucose significantly increased THBP mRNA (92 ± 37 vs 18 ± 4, p < 0.005), and protein in HMCs. The expression of THBP as a fusion protein in transfected HMCs resulted in reduction of glucose-induced intracellular ROS. We have shown that THBP mRNA is increased in diabetic kidney and heart, is regulated by high glucose in renal cells, and appears to attenuate glucose-induced intracellular ROS. These data suggest that THBP may be involved in the cellular pathways activated in response to glucose. This is the first report linking hyperglycemia with THBP and suggests that the role of THBP in diabetic complications should be further investigated.  相似文献   

9.
Activation of human plasma prekallikrein by a bacterial metalloendopeptidase, Pseudomonas aeruginosa elastase, was reported (Shibuya et al. (1991) Biochim. Biophys. Acta 1097, 23–27). Details of the activation process were presently studied. The activation accompanied limited proteolysis of a peptide bond inside of a disulfide bridge of prekallikrein molecule. Amino acid sequencing analysis of the newly generated amino-terminal revealed that the cleavage site was Arg371-Ile372 bond which is the scissile bond in the activation of prekallikrein with trypsin-type proteinases. A pentapeptide substrate, 2-aminobenzoyl-Ser-Thr-Ile-Val-4-nitrobenzylamide, which contained the amino acid sequence identical to that around the scissile bond of prekallikrein was synthesized. Pseudomonal elastase, indeed, hydrolyzed the substrate at Arg-Ile bond with the kinetic parameters of Km = 118 μM, kcat = 1.56/s and kcat/Km = 1.33 · 104/s M. These results indicated that the Arg371-Ile372 bond was sensitive not only to trypsin-type serine proteinases, but also a bacterial metalloproteinase. Kinetic analysis of the prekallikrein activation by psuedomonal elastase, however, revealed that the activation rate was show, though the Km values was good enough to expect an occurence of this activation in vivo (Km = 248 nM, k = 6.8 · 10?4/s, and kcat/Km = 2.7 · 103/s M. The activation rate of prekallikrein by pseudomonal elastase in Hageman factor deficient plasma was remarkably improved when the plasma was reconstituted with purified Hageman factor molecule. From the results, a biologuical significance of the proteinase cascade in the plasma kinin generation was also indicated. The present in vitro study might support the hypothesis that the Hageman factor/kallikrein-kinin system plays an important role in bacterial infection including the pseudomonal one.  相似文献   

10.
We investigated the fatty acid compositions of phospholipids in Drosophila melanogaster lines showing rapid (CR), intermediate (CTL), or slow (CS) recovery from chill coma, which were established by artificial selection or by free recombination without selection. Compared to CTL, CS showed a low composition of dienoic acids and a small number of double bonds in the fatty acids. The ratio of unsaturated fatty acids and saturated fatty acids (UFAs/SFAs) was significantly lower in CS than in CTL. CR had higher monoenoic acid composition and lower dienoic acid composition than CTL. In addition, the amount of SFAs was lower and therefore the UFAs/SFAs ratio considerably higher in CR than in CTL. These changes in phospholipid fatty acids probably contributed to losing and maintaining the homeoviscosity of the cellular membranes in CS and CR, respectively, at low temperature and therefore produced their distinct phenotypes in recovery from chill coma.  相似文献   

11.
We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015–15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg9 to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.  相似文献   

12.
In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.  相似文献   

13.
14.
Hexavalent chromium (Cr6 +) is a common pollutant transient metal with high toxicity in the environment. The toxicological effects partly result from oxidative damage due to the production of excessive reactive oxygen species (ROS) in the reductive process of Cr6 +. To explore the influence of ROS induced directly by Cr6 + on the oxidative stress generation and antioxidant system, the full length cDNAs of antioxidant-related genes cat, gpx1 and Cu/Zn-sod were successfully acquired from pengze crucian carp first and analyzed. Furthermore, the mRNA expression of the antioxidant genes encompassing catalase (cat), copper/zinc superoxide dismutase (Cu/Zn-sod) and glutathione peroxidase (gpx1), antioxidant enzyme activities of CAT, SOD, and GPx and total protein content were further studied in the gill, intestine and liver of pengze crucian carp (Carassius auratus var. Pengze) juveniles upon acute exposure to Cr6 + at concentrations of 0.1, 1.0, 10 and 100 mg/L for 4 days. Differential significant changes of the antioxidant enzymes and gene expression were observed in different tissues. The findings contribute to better understanding the antioxidant mechanisms induced by Cr6 + and selecting the organic-specific sensitive biomarkers to monitor the safety of the aquatic ecosystem.  相似文献   

15.
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6–2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.  相似文献   

16.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

17.
Evolvulus alsinoides, also known as Shankpushapi, is a commonly used traditional medicine for enhancing memory. We evaluated the in vitro free radical scavenging and enzymes [acetylcholinesterase, butyrylcholinestrase, glycogen synthase kinase-3-β (GSK-3-β), rho kinase (ROCK II), prolyl endopeptidase (PEP), catechol-O-methyl transferase (COMT) and lipoxygenase (LOX)] inhibitory activities of aqueous and hydro-alcoholic extracts of E. alsinoides. Hydro-alcoholic extract of E. alsinoides demonstrated more free radical scavenging activity as compared to aqueous extract. Hydro-alcoholic extract also showed higher cholinesterase, GSK-3-β, ROCK II, PEP, COMT and LOX enzyme inhibitory activities as compared to aqueous extract. Phytochemical analysis revealed more flavanoids in hydro-alcoholic extract as compared to aqueous extract but no significant difference in phenolic content of the two extracts was observed. Based on in vitro data, hydro-alcoholic extract (100, 300 and 500 mg/kg, p.o.) was selected for in vivo study in intracerebroventricularly injected streptozotocin (STZ) induced cognitive impairment in male Wistar rats. Elevated plus maze, passive avoidance and Morris water maze were used for assessment of cognitive function on 14th, 21st and 28th day after STZ injection. Oxidative stress parameters (malondialdehyde, reduced glutathione, nitric oxide levels and superoxide dismutase activity), cholinergic dysfunction and rho kinase (ROCK II) expression were studied in cerebral cortex and hippocampus of rat brain at the end of the study. Hydro-alcoholic extract of E. alsinoides dose dependently prevented STZ induced cognitive impairment by reducing the oxidative stress, improving cholinergic function and preventing the increase in rho kinase expression. The results suggest an anti-Alzheimer potential of hydro-alcoholic extract of E. alsinoides.  相似文献   

18.
The interaction with the cytoplasmic membrane of the inducible, membrane-bound, cytochrome-linked dehydrogenases specific for the oxidation of d-alanine, allohydroxy-d-proline, choline and sarcosine in Pseudomonas aeruginosa was investigated. The susceptibility of d-alanine dehydrogenase to solubilisation by cation depletion or by washing with high ionic strength buffers indicated that it was a peripheral membrane protein. The effect of various divalent cations in reducing the amount of enzyme released by cation depletion suggests a requirement for Mg2+ in the binding of d-alanine dehydrogenase to the cytoplasmic membrane. The peripheral nature of all four dehydrogenases was confirmed by examination of the molecular properties and phospholipid content of preparations of the enzymes solubilised with 1 M phosphate buffer (pH 7.0). Additional confirmatory evidence was provided by Arrhenius plots of membrane-bound activity of d-alanine and allohydroxy-d-proline dehydrogenases which were monophasic and independent of the discontinuities attributable to membrane lipid phase separations which characterise such plots of the activity of integral membrane-bound enzymes. The shape of the Arrhenius plots obtained for the activities of known integral respiratory proteins of P. aeruginosa suggests that these enzymes may remain in a fluid environment throughout the course of the phase separation.  相似文献   

19.
The purpose of the study was to investigate the effects of mild hyperthermia on cell viability, release of lactate dehydrogenase (LDH), superoxide dismutase (SOD) activity, malondialdehyde (MDA) formation, total antioxidant capacity (T-AOC), and the relative mRNA levels of heat shock protein (HSP60, 70, and 90) in hepatic cells of grass carp (Ctenopharyngodon idellus) before and after temperature stress. Cultured cells were exposed to thermal stress (32 °C) for 0.5, 1, 2, 4, and 8 h. The results showed that hyperthermia stress significantly reduced cell viability (P<0.01) and increased LDH release at 0.5 and 1 h (P<0.05). Additionally, hyperthermia stress led to oxidative stress as evidenced by significantly decreased T-AOC after treating cells for 0.5 and 8 h (P<0.05). SOD activity also significantly decreased after 1 h of stress (P<0.05), but MDA formation increased after 8 h of stress (P<0.05). This may be partly responsible for the lower cell viability and higher LDH release we observed. The differences between SOD activity, MDA formation, and T-AOC between the 2 h treatment group and the control were smaller than that of other groups. This indicated that cellular antioxidant enzyme systems play an important role in the defense against oxidative stress. Further tests showed that the expression of HSP60 at 1, 2, and 4 h (P<0.05), HSP70 at 0.5 and 1 h (P<0.01), and HSP90 at all time points after stress were higher (P<0.01) than pre-stress levels. This suggested that HSPs possess the ability to modulate cellular anti-stress responses and play key roles in protecting organisms from heat stress. In conclusion, hyperthermia inhibits cell proliferation, induces cell oxidative stress, and enhances HSP expression in hepatic cells of grass carp.  相似文献   

20.
Sec6/8 complex regulates delivery of exocytic vesicles to plasma membrane docking sites, but how it is recruited to specific sites in the exocytic pathway is poorly understood. We identified an Sec6/8 complex on trans-Golgi network (TGN) and plasma membrane in normal rat kidney (NRK) cells that formed either fibroblast- (NRK-49F) or epithelial-like (NRK-52E) intercellular junctions. At both TGN and plasma membrane, Sec6/8 complex colocalizes with exocytic cargo protein, vesicular stomatitis virus G protein (VSVG)-tsO45. Newly synthesized Sec6/8 complex is simultaneously recruited from the cytosol to both sites. However, brefeldin A treatment inhibits recruitment to the plasma membrane and other treatments that block exocytosis (e.g., expression of kinase-inactive protein kinase D and low temperature incubation) cause accumulation of Sec6/8 on the TGN, indicating that steady-state distribution of Sec6/8 complex depends on continuous exocytic vesicle trafficking. Addition of antibodies specific for TGN- or plasma membrane-bound Sec6/8 complexes to semiintact NRK cells results in cargo accumulation in a perinuclear region or near the plasma membrane, respectively. These results indicate that Sec6/8 complex is required for several steps in exocytic transport of vesicles between TGN and plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号