首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the first identified N6-methyladenosine (m6A) demethylase, fat mass and obesity-associated (FTO) protein is associated with fatty acid synthase (FASN) and lipid accumulation. However, little is known about the regulatory role of FTO in the expression of FASN and de novo lipogenesis through m6A modification. In this study, we used FTO small interfering RNA to explore the effects of FTO knockdown on hepatic lipogenesis and its underlying epigenetic mechanism in HepG2 cells. We found that knockdown of FTO increased m6A levels in total RNA and enhanced the expression of YTH domain family member 2 which serves as the m6A-binding protein. The de novo lipogenic enzymes and intracellular lipid content were significantly decreased under FTO knockdown. Mechanistically, knockdown of FTO dramatically enhanced m6A levels in FASN messenger RNA (mRNA), leading to the reduced expression of FASN mRNA through m6A-mediated mRNA decay. The protein expressions of FASN along with acetyl CoA carboxylase and ATP-citrate lyase were further decreased, which inhibited de novo lipogenesis, thereby resulting in the deficiency of lipid accumulation in HepG2 cells and the induction of cellular apoptosis. The results reveal that FTO regulates hepatic lipogenesis via FTO-dependent m6A demethylation in FASN mRNA and indicate the critical role of FTO-mediated lipid metabolism in the survival of HepG2 cells. This study provides novel insights into a unique RNA epigenetic mechanism by which FTO mediates hepatic lipid accumulation through m6A modification and indicates that FTO could be a potential target for obesity-related diseases and cancer.  相似文献   

2.
3.
本研究目的是为了探究7-酮基胆甾醇-9-羧基壬烷(OXL-1)对油酸诱导的HepG2细胞形成的非酒精性脂肪性肝病(NAFLD)细胞模型中脂质生成的潜在抑制作用。油红染色显示OXL-1能显著降低油酸诱导的甘油三酯(TG)和总胆固醇(TC)的脂质生成。基因芯片分析发现,与对照组相比,HepG2细胞经OXL-1处理后固醇调节元件结合蛋白1c(SREBP1c)、脂肪酸合酶(FAS)及乙酰辅酶a羧化酶α(ACCα)转录表达显著降低。相比较于对照组,OXL-1组甘油三脂减少56.87% ± 9.08%(P<0.01),总胆固醇减少24.96% ± 5.45%(P<0.01)。同时也使SREBP1c、FAS和ACCα蛋白质表达水平降低。OXL-1组相比OA组,其SREBP1c、FAS和ACCα的蛋白质表达分别下调52.62% ± 6.38%(P<0.01)、51.14% ± 8.75%(P<0.01)和19.46% ± 3.64%(P<0.05)。结果说明,OXL-1可能经由SREBP1c、FAS和ACCα的转录和蛋白质水平的调控作用来阻止OA诱导的脂质蓄积。综上结果揭示,OXL-1可能在非酒精性脂肪肝病细胞模型中作为一种阻止脂质积累的新型化合物。  相似文献   

4.
5.
6.
7.
8.
The main purpose of this study is to examine the effect of caffeine on lipid accumulation in human hepatoma HepG2 cells. Significant decreases in the accumulation of hepatic lipids, such as triglyceride (TG), and cholesterol were observed when HepG2 cells were treated with caffeine as indicated. Caffeine decreased the mRNA level of lipogenesis-associated genes (SREBP1c, SREBP2, FAS, SCD1, HMGR and LDLR). In contrast, mRNA level of CD36, which is responsible for lipid uptake and catabolism, was increased. Next, the effect of caffeine on AMP-activated protein kinase (AMPK) signaling pathway was examined. Phosphorylation of AMPK and acetyl-CoA carboxylase were evidently increased when the cells were treated with caffeine as indicated for 24 h. These effects were all reversed in the presence of compound C, an AMPK inhibitor. In summary, these data indicate that caffeine effectively depleted TG and cholesterol levels by inhibition of lipogenesis and stimulation of lipolysis through modulating AMPK-SREBP signaling pathways. [BMB Reports 2013; 46(4): 207-212]  相似文献   

9.
Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates and activates AGC kinase family members, including Akt, SGK1, and PKC, in response to insulin/IGF1. The liver is a key organ in insulin-mediated regulation of metabolism. To assess the role of hepatic mTORC2, we generated liver-specific rictor knockout (LiRiKO) mice. Fed LiRiKO mice displayed loss of Akt Ser473 phosphorylation and reduced glucokinase and SREBP1c activity in the liver, leading to constitutive gluconeogenesis, and impaired glycolysis and lipogenesis, suggesting that the mTORC2-deficient liver is unable to sense satiety. These liver-specific defects resulted in systemic hyperglycemia, hyperinsulinemia, and hypolipidemia. Expression of constitutively active Akt2 in mTORC2-deficient hepatocytes restored both glucose flux and lipogenesis, whereas glucokinase overexpression rescued glucose flux but not lipogenesis. Thus, mTORC2 regulates hepatic glucose and lipid metabolism via insulin-induced Akt signaling to control whole-body metabolic homeostasis. These findings have implications for emerging drug therapies that target mTORC2.  相似文献   

10.
11.
Hepatic de-novo lipogenesis and production of triglyceride rich very low density lipoprotein (VLDL) is increased in the state of insulin resistance, however, the role of a negative regulator of the insulin signaling pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to high glucose (33 mM). The results showed that high glucose induced SHIP2 mRNA and protein levels in HepG2 cells. Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) ameliorated high glucose-induced de-novo lipogenesis and secretion of apoB containing lipoprotein in HepG2 cells, as demonstrated by a reduction in both secreted apoB and MTP expression, and decreased triglyceride levels and the expression of lipogenic genes such as SREBP1c, FAS and ACC. Overexpression of the SHIP2-DN decreased high glucose-induced apoB containing lipoproteins secretion via reduction in ROS generation, JNK phosphorylation and Akt activation. Furthermore, using the specific inhibitor and activator, it was found that the AMPK/mTOR/SREBP1 is the signaling pathway that mediates the effects of SHIP2 modulation on hepatic de-novo lipogenesis. Taken together, these findings suggest that SHIP2 is an important regulator of hepatic lipogenesis and lipoprotein secretion in insulin resistance state.  相似文献   

12.
Cell death-inducing DFFA-like effector c (CIDEC) protein, also known as fat specific protein 27 (Fsp27), is localized to lipid droplets. CIDEC protein is required for unilocular lipid droplet formation and optimal energy storage in addition to controlling lipid metabolism in adipocytes and hepatocytes. Research found that Ad-36 could induce lipid droplets in the cultured skeletal muscle cells and this process may be mediated by promoting CIDEC expression. The content of intermuscular fat is an important index for evaluation of beef quality, so the CIDEC gene appeared to be a candidate gene for regulation of intermuscular fat, however similar research for the bovine CIDEC gene is lacking. This paper examined the tissue expression profile of CIDEC gene in cattle using real-time RT-PCR to suggest that bovine CIDEC is highly expressed in adipose tissue. In addition, the Bovine CIDEC gene was cloned and inserted into the eukaryotic expression vector pET-28a(+), whereupon recombinant bovine CIDEC protein was induced and identified by Western-blot. A phylogenetic analysis showed that the animo acid sequence of bovine CIDEC was closer to mammalian CIDEC than rasorial CIDEC. We found ten single nucleotide polymorphisms sites (SNPs) in bovine CIDEC gene, of which SNP 2, 3, 4, 6 and 9, and SNP 8 and 10 were in complete linkage disequilibrium, respectively. SNP 1, 2 and 10 were used in further haplotype studies. Eight different haplotypes were identified in 973 cattle, of which haplotype 8 predominated with frequencies ranging from 42.90 to 54.30 %. This research provides a basis for future functional studies of CIDEC in cattle.  相似文献   

13.
Choi  You-Jin  Lee  Geunhye  Yun  Sung Ho  Lee  Wonseok  Yu  Jieun  Kim  Sang Kyum  Lee  Byung-Hoon 《Amino acids》2022,54(5):823-834

Serine hydroxymethyltransferase 2 (SHMT2) converts serine into glycine in the mitochondrial matrix, transferring a methyl group to tetrahydrofolate. SHMT2 plays an important role in the maintenance of one-carbon metabolism. Previously, we found a negative correlation between the serine concentration and the progression of fatty liver disease (FLD). However, little is known about the role of SHMT2 in hepatic lipid metabolism. We established SHMT2 knockdown (KD) mouse primary hepatocytes using RNA interference to investigate the role of SHMT2 in lipid metabolism. SHMT2 KD hepatocytes showed decreased lipid accumulation with reduced glycine levels compared to the scramble cells, which was restored upon reintroducing SHMT2. SHMT2 KD hepatocytes showed downregulation of the mTOR/PPAR? pathway with decreased gene expression related to lipogenesis and fatty acid uptake. Pharmacological activation of mTOR or PPAR? overexpression blocked the inhibitory effect of SHMT2 KD on lipid accumulation. We also showed that glycine activated mTOR/PPAR? signaling and identified glycine as a mediator of SHMT2-responsive lipid accumulation in hepatocytes. In conclusion, silencing SHMT2 in hepatocytes ameliorates lipid accumulation via the glycine-mediated mTOR/PPAR? pathway. Our findings underscore the possibility of SHMT2 as a therapeutic target of FLD.

  相似文献   

14.
Epiberberine (EPI), extracted from Rhizome Coptidis, has been shown to attenuate hyperlipidemia in vivo. Herein we have studied the mechanism by which EPI is active against non-alcoholic steatohepatitis (NASH) using, mice fed on a methionine- and choline-deficient (MCD) diet and HepG2 cells exposed to free fatty acids (FFA). We show that small heterodimer partner (SHP) protein is key in the regulation of lipid synthesis. In HepG2 cells and in the livers of MCD-fed mice, EPI elevated SHP levels, and this was accompanied by a reduction in sterol regulatory element-binding protein-1c (SREBP-1c) and FASN. Therefore, EPI reduced triglyceride (TG) accumulation in steatotic hepatocytes, even in HepG2 cells treated with siRNA-SHP, and also improved microbiota. Thus, EPI suppresses hepatic TG synthesis and ameliorates liver steatosis by upregulating SHP and inhibiting the SREBP1/FASN pathway, and improves gut microbiome.  相似文献   

15.
16.
Exposure to Bisphenol A (BPA) has been associated with the development of nonalcoholic fatty liver disease (NAFLD) but the underlying mechanism remains unclear. Given that microRNA (miRNA) is recognized as a key regulator of lipid metabolism and a potential mediator of environmental cues, this study was designed to explore whether exposure to BPA-triggered abnormal steatosis and lipid accumulation in the liver could be modulated by miR-192. We showed that male post-weaning C57BL/6 mice exposed to 50 μg/kg/day of BPA by oral gavage for 90 days displayed a NAFLD-like phenotype. In addition, we found in mouse liver and human HepG2 cells that BPA-induced hepatic steatosis and lipid accumulation were associated with decreased expression of miR-192, upregulation of SREBF1 and a series of genes involved in de novo lipogenesis. Downregulation of miR-192 in BPA-exposed hepatocytes could be due to defective pre-miR-192 processing by DROSHA. Using HepG2 cells, we further confirmed that miR-192 directly acted on the 3′UTR of SREBF1, contributing to dysregulation of lipid homeostasis in hepatocytes. MiR-192 mimic and lentivirus-mediated overexpression of miR-192 improved BPA-induced hepatic steatosis by suppressing SREBF1. Lastly, we noted that lipid accumulation was not a strict requirement for developing insulin resistance in mice after BPA treatment. In conclusion, this study demonstrated a novel mechanism in which NAFLD associated with BPA exposure arose from alterations in the miR-192-SREBF1 axis.  相似文献   

17.
Fenugreek (Trigonella foenum‐graecum) seeds, used as a condiment, are documented for health benefits including amelioration of abnormalities in lipid homeostasis due to its hypolipidemic properties. However, molecular mechanisms underlying the hypolipidemic effect of fenugreek seeds remain obscure. In this study, hypolipidemic effect of a novel thermostable extract of fenugreek seeds (TEFS) was evaluated in vitro by employing differentiating and differentiated 3T3‐L1 cells, and HepG2 cells cultured in normal or sterol‐enriched conditions. Hypolipidemic effect was studied by quantifying decrease in accumulation of fat or by western blot analysis of adipogenic and lipogenic factors. At molecular level, TEFS inhibited accumulation of fat in differentiating and differentiated 3T3‐L1 cells via decreased expression of adipogenic factors such as peroxisome proliferators activated‐receptor‐γ (PPAR‐γ), sterol regulatory element‐binding protein‐1 (SREBP‐1), and CAAT element‐binding proteins‐α (c/EBP‐α). We also show that following TEFS treatment, cellular triglycerides (TGs), and cholesterol concentrations decreased significantly (P < 0.05) in HepG2 cells via reduced expression of SREBP‐1, at mRNA as well as protein level. Under sterol enriched condition, TEFS upregulated low‐density lipoprotein receptor (LDLR) expression resulting in enhanced LDL uptake. Treating fat supplement fed C57BL6/J mice with TEFS for 15 days resulted in decrease of serum TG, LDL‐cholesterol (LDLc), and body weight in a dose‐ and time‐dependent manner (P < 0.05). Results indicate that hypolipidemic effect of TEFS is due to inhibition of fat accumulation and upregulation of LDLR. Taken together, the study suggests that TEFS may have potential application in the management of dyslipidemia and its associated metabolic disorders.  相似文献   

18.
PKR-like endoplasmic reticulum (ER) kinase (PERK) is an ER-associated stress sensor protein which phosphorylates eukaryotic initiation factor 2α (eIF2α) to induce translation attenuation in response to ER stress. PERK is also a regulator of lipogenesis during adipocyte differentiation through activation of the cleavage of sterol regulatory element binding protein 1 (SREBP1), resulting in the upregulation of lipogenic enzymes. Our recent studies have shown that human cytomegalovirus (HCMV) infection in human fibroblasts (HF) induces adipocyte-like lipogenesis through the activation of SREBP1. Here, we report that PERK expression is highly increased in HCMV-infected cells and is necessary for HCMV growth. Depletion of PERK, using short hairpin RNA (shRNA), resulted in attenuation of HCMV growth, inhibition of lipid synthesis and reduction of lipogenic gene expression. Examination of the cleavage of SREBP proteins showed PERK depletion inhibited the cleavage of SREBP1, but not SREBP2, in HCMV-infected cells, suggesting different cleavage regulatory mechanisms for SREBP1 and 2. Further studies showed that the depletion of SREBP1, but not SREBP2, reduced lipid synthesis in HCMV infection, suggesting that activation of SREBP1 is sufficient to induce lipogenesis in HCMV infection. The reduction of lipid synthesis by PERK depletion can be partially restored by expressing a Flag-tagged nuclear form of SREBP1a. Our studies also suggest that the induction of PERK in HCMV-infected cells stimulates SREBP1 cleavage by reducing levels of Insig1 (Insulin inducible gene 1) protein; this occurs independent of the phosphorylation of eIF2α. Introduction of an exogenous Insig1-Myc into HCMV infected cells significantly reduced HCMV growth and lipid synthesis. Our data demonstrate that the induction of PERK during HCMV infection is necessary for full activation of lipogenesis; this effect appears to be mediated by limiting the levels of Insig1 thus freeing SREBP1-SCAP complexes for SREBP1 processing.  相似文献   

19.
Li F  Gu Y  Dong W  Li H  Zhang L  Li N  Li W  Zhang L  Song Y  Jiang L  Ye J  Li Q 《The FEBS journal》2010,277(20):4173-4183
Cell death-inducing DFF45-like effector (CIDE) family proteins, including cell death-inducing DFF45-like effector A (CIDEA), cell death-inducing DFF45-like effector B (CIDEB) and cell death-inducing DFF45-like effector C (CIDEC) [fat-specific protein of 27 kDa in rodent (FSP27) in rodents], were originally identified by their sequence homology to the N-terminal region of DNA fragmentation factor DFF40/45. Recent reports have revealed that CIDE family proteins play important roles in lipid metabolism. Several studies involving knockdown mice revealed that FSP27 is a lipid droplet-targeting protein that can promote the formation of lipid droplets. However, the detailed roles of human CIDEC in the differentiation of human adipocytes remain unknown. In the present study, we found that the expression of CIDEC increased during the differentiation of fetal adipose tissues, but decreased during the de-differentiation of adipocytic tumors, suggesting that the expression of CIDEC should be positively correlated with the differentiation of adipocytes. Furthermore, we verified that human CIDEC was localized on the surface of lipid droplets. Using human primary pre-adipocytes, we confirmed that the expression of CIDEC was elevated during the differentiation of pre-adipocytes, and knockdown of CIDEC in human primary pre-adipocytes resulted in differentiation defects. These data demonstrate that CIDEC is essential for the differentiation of adipose tissue. Together with regulating adipocyte lipid metabolism, CIDEC should be a potential target for regulating adipocyte differentiation and reducing fat cell mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号