首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nitric oxide (NO) is considered a key molecule in the defense against intracellular pathogens, particularly Leishmania. The expression of inducible nitric oxide synthase and consequent production of NO by infected macrophages has been shown to correlate with leishmaniasis resistance in the murine model as well as in human patients. Nitric oxide donors have been used successfully in the treatment of cutaneous leishmaniasis in humans, although their mechanisms of action are not fully understood. In the present work, the dose-dependent cytotoxic effects of the NO-donors S-nitroso-N-acetyl-l-cysteine (SNAC) and S-nitrosoglutathione (GSNO) against Leishmania were evaluated. GSNO inhibited the growth of Leishmania major and Leishmania amazonensis with in vitro 50% inhibitory concentrations (IC(50)) of 68.8+/-22.86 and 68.9+/-7.9 micromol L(-1), respectively. The IC(50) for SNAC against L. major and L. amazonensis were, respectively, 54.6+/-8.3 and 181.6+/-12.5 micromol L(-1). The leishmanicidal activity of GSNO, but not of SNAC, was reversed by ascorbic acid (AA) and dithiothreitol (DTT), suggesting that the mechanism of action of GSNO is related to the transnitrosation of parasite proteins. These results demonstrate that SNAC and GSNO have leishmanicidal activity, and are thus potential therapeutic agents against cutaneous leishmaniasis.  相似文献   

2.
In order to contribute for the search of new drugs for leishmaniasis, we study the susceptibility of Leishmania infantum, Leishmania tropica and Leishmania major to Cymbopogon citratus essential oil and major compounds, mrycene and citral. C. citratus and citral were the most active inhibiting L. infantum, L. tropica and L. major growth at IC(50) concentrations ranging from 25 to 52 μg/ml and from 34 to 42 μg/ml, respectively. L. infantum promastigotes exposed to essential oil and citral underwent considerable ultrastructural alterations, namely mitochondrial and kinetoplast swelling, autophagosomal structures, disruption of nuclear membrane and nuclear chromatin condensation. C. citratus essential oil and citral promoted the leishmanicidal effect by triggering a programmed cell death. In fact, the leishmanicidal activity was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. Taken together, ours findings lead us to propose that citral was responsible for anti-Leishmania activity of the C. citratus and both may represent a valuable source for therapeutic control of leishmaniasis.  相似文献   

3.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

4.
Tellurium compounds have shown several biological properties and recently the leishmanicidal effect of one organotellurane was demonstrated. These findings led us to test the effect of the organotellurium compound RF07 on Leishmania (Leishmania) chagasi, the agent of visceral leishmaniasis in Latin America. In vitro assays were performed in L. (L.) chagasi-infected bone marrow derived macrophages treated with different concentrations of RF07. In in vivo experiments Golden hamsters were infected with L. (L.) chagasi and injected intraperitoneally with RF07 whereas control animals received either Glucantime or PBS. The effect of RF07 on cathepsin B activity of L. (L.) chagasi amastigotes was assayed spectrofluorometrically using fluorogenic substrates. The main findings were: 1) RF07 showed significant leishmanicidal activity against intracellular parasites at submicromolar concentrations (IC50 of 529.7±26.5 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 of 5,426±272.8 nM); 2) kinetics assays showed an increasing leishmanicidal action of RF07 at longer periods of treatment; 3) one month after intraperitoneal injection of RF07 L. (L.) chagasi-infected hamsters showed a reduction of 99.6% of parasite burden when compared to controls that received PBS; 4) RF07 inhibited the cathepsin B activity of L. (L.) chagasi amastigotes. The present results demonstrated that the tellurium compound RF07 is able to destroy L. (L.) chagasi in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support further study of the potential of RF07 as a possible alternative for the chemotherapy of visceral leishmaniasis.  相似文献   

5.
Trypanothione synthetase, a validated drug target, synthesizes trypanothione from glutathione and spermidine. Here we report the gene cloning, expression, characterization and inhibition studies of trypanothione synthetase from Leishmania donovani (LdTryS). The purified recombinant LdTryS enzyme obeyed Michaelis-Menten kinetics. High substrate inhibition was observed with glutathione (K(m)=33.24 μm, k(cat)=1.3 s(-1), K(i)=866 μm). The enzyme shows simple hyperbolic kinetics with fixed glutathione concentration and with other substrates limiting K(m) values for Mg. ATP and spermidine of 14.2 μm and 139.6 μm, respectively. LdTryS was also screened for inhibitors. Tomatine, conessine, uvaol and betulin were identified as inhibitors of the enzyme and were tested for leishmanicidal activity. Finally, the effect of LdTryS inhibitors on redox homeostasis of the parasite gives a broader picture of their action against leishmaniasis.  相似文献   

6.
Trypanosomiasis and leishmaniasis pose major public health threats for many countries, particularly those in sub-Saharan Africa and South America. In the present study, we evaluated the in vitro antiprotozoal activity of three irregular, linear sesquiterpene lactones recently isolated from Greek Anthemis auriculata, namely anthecotulide (1), 4-hydroxyanthecotulide (2) and 4-acetoxyanthecotulide (3). Trypomastigote forms of Trypanosoma brucei rhodesiense and T. cruzi as well as axenic amastigotes of Leishmania donovani were used for testing. The cytotoxic potential of the compounds was also assessed against mammalian (rat) skeletal myoblasts (L6 cells). All compounds showed potent trypanocidal and leishmanicidal activity. 4-Hydroxyanthecotulide (2) appeared to be the most active compound against all parasites, particularly towards T. b. rhodesiense (IC50 0.56 μg/ml), whereas 4-acetoxyanthecotulide (3) was the least active. All three metabolites possessed toxicity on mammalian cells, which might limit their use as antiprotozoal agents.  相似文献   

7.
The alkylphosphocholine miltefosine (n-hexadecylphosphocholine, MT) has been introduced recently as a very effective drug for the oral treatment of human leishmaniasis. However, the parasiticidal mechanism of MT at a molecular level is far from being understood. Here we report the synthesis and biological characterization of 16-mercaptohexadecylphosphocholine, a thiol analog of MT which was designed to facilitate the search of MT interacting targets within the parasite by a variety of analytical methods. This analog presents the same leishmanicidal effect as the parent drug against Leishmania donovani promastigotes and Leishmania pifanoi axenic amastigotes, and has been used to develop an affinity chromatography method to attempt the isolation of putative Leishmania proteins that bind to the phosphocholine part of the molecule.  相似文献   

8.
We report new organoselenium compounds bearing the sulfonamide moiety as effective inhibitors of the β-isoform of Carbonic Anhydrase from the unicellular parasitic protozoan L. donovani chagasi. All derivatives were evaluated in vitro for their leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells. Compounds 3e-g showed their activity in the low micromolar range with IC50 values spanning from 0.72 to 0.81 µM and selectivity indexes (SI) > 8 (for 3g SI > 30), thus much higher than those observed for the reference drugs miltefosine and edelfosine. This is the first study which reports new selenoderivatives with promising leishmanicidal properties and acting as Carbonic Anhydrase inhibitors too thus paving the way to the development of innovative agents for the treatment of neglected diseases such as leishmaniasis.  相似文献   

9.
Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466′, Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777–TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.  相似文献   

10.
Liposomes consisting of stearylamine (SA) and egg yolk phosphatidylcholine (PC) were studied for their cytotoxic activity against freshly transformed promastigotes and intracellular amastigotes of Leishmania donovani, the causative agent of visceral leishmaniasis. More than 99% of the parasites of strain AG83 were killed within 60 min by treatment with 22 mol% SA-PC liposomes (132 microg/ml total lipids). This was further confirmed by incubating the liposome-treated promastigotes at 22 C for 96 hr. The killing activity of the liposomes progressively decreased with lowering lipid concentration. However, weak cytotoxic activity was still detected at 6.6 microg/ml lipids. Leishmanicidal activity of the liposomes became stronger with increasing SA content but was reduced with the incorporation of cholesterol in the liposomes. A similar cytotoxic effect was observed on other Indian strains of L. donovani, for example PKDL and DD8, as well as on species such as Leishmania donovani S1, Leishmania donovani infantum, Leishmania tropica, Leishmania amazonensis, and Leishmania mexicana. However, freshly transformed promastigotes appeared to be more susceptible than the ones subcultured. The strong leishmanicidal activity of SA-PC liposomes was also demonstrated toward intracellular L. donovani amastigotes. The SA-bearing vesicles could effectively inhibit the growth and multiplication of the parasites within the macrophages. The cytolytic activity of these liposomes on leishmanial parasites and low toxicity on host macrophages may, thus, find application in the therapy of leishmaniasis.  相似文献   

11.
Patients with clinical manifestations of leishmaniasis, including cutaneous leishmaniasis, have limited treatment options, and existing therapies frequently have significant untoward liabilities. Rapid expansion in the diversity of available cutaneous leishmanicidal chemotypes is the initial step in finding alternative efficacious treatments. To this end, we combined a low-stringency Leishmania major promastigote growth inhibition assay with a structural computational filtering algorithm. After a rigorous assay validation process, we interrogated ∼200,000 unique compounds for L. major promastigote growth inhibition. Using iterative computational filtering of the compounds exhibiting >50% inhibition, we identified 553 structural clusters and 640 compound singletons. Secondary confirmation assays yielded 93 compounds with EC50s ≤ 1 µM, with none of the identified chemotypes being structurally similar to known leishmanicidals and most having favorable in silico predicted bioavailability characteristics. The leishmanicidal activity of a representative subset of 15 chemotypes was confirmed in two independent assay formats, and L. major parasite specificity was demonstrated by assaying against a panel of human cell lines. Thirteen chemotypes inhibited the growth of a L. major axenic amastigote-like population. Murine in vivo efficacy studies using one of the new chemotypes document inhibition of footpad lesion development. These results authenticate that low stringency, large-scale compound screening combined with computational structure filtering can rapidly expand the chemotypes targeting in vitro and in vivo Leishmania growth and viability.  相似文献   

12.
Nine O-alkyl and O-prenyl derivatives were synthesized from commercial 2,4-dihydroxybenzophenone, 4,e4,4′-dihydroxybenzophenone and were evaluated for their leishmanicidal activity against promastigote forms of Leishmania amazonensis, as well their toxicity in murine macrophages. All derivatives exhibited better biological activity than their hydroxylated benzophenones precursors, and new compound LFQM-123 (3c) was 250-fold more active than its precursor 4,4′-dihydroxybenzophenone (3). Moreover, some of the results were comparable to the standard drug Amphotericin B, suggesting that the increase in lipophilicity could facilitate protozoa membrane permeation. In this study we confirmed that benzophenone derivatives exhibit leishmanicidal properties, with relatively low toxicity, and thus could be exploited as promise prototypes for the design and development of new drug for the treatment of leishmaniasis.  相似文献   

13.
The genome mining of biosynthetic genes from fungi demonstrates the enormous pharmacological potential that is still little explored. These results have encouraged the scientific community to invest in fungi as a source of innovative alternatives for the treatment of neglected diseases, such as leishmaniasis. Therefore, this work aimed to identify, through a systematic search in the databases of PubMed, Lilacs and Scielo, the existing evidence in the literature regarding the efficacy of the leishmanicidal activity of fungal bioproducts that represent new starting points for the advancement of pharmacotherapy of leishmaniasis. During the search process, 59 articles met all the eligibility criteria and, therefore, were included in this review. The studies demonstrate that different prospecting, cultivation, biotechnological and synthetic modification strategies contribute to the discovery and development of new therapeutic fungal compounds. 39 (66.1%) of the studies presented at least one isolated compound with leishmanicidal activity, while 20 (33.9%) evaluated only crude extracts or semipurified fractions. Terpenes, steroids and quinones were the most prevalent chemical classes among the isolated compounds. There are many studies about active compounds that have been isolated from Penicillium and Aspergillus genera. A large majority (89.8%) of the selected studies been conducted in vitro. Only six studies performed in vivo assay. The species of Leishmania amazonensis and Leishmania donovani were the most evaluated. The results support the hypothesis of the pharmacological potential of fungal bioproducts in the treatment of leishmaniasis.  相似文献   

14.

Background

Antitumor cyclopalladated complexes with low toxicity to laboratory animals have shown leishmanicidal effect. These findings stimulated us to test the leishmanicidal property of one palladacycle compound called DPPE 1.2 on Leishmania (Leishmania) amazonensis, an agent of simple and diffuse forms of cutaneous leishmaniasis in the Amazon region, Brazil.

Methodology/Principal Findings

Promastigotes of L. (L.) amazonensis and infected bone marrow-derived macrophages were treated with different concentrations of DPPE 1.2. In in vivo assays foot lesions of L. (L.) amazonensis-infected BALB/c mice were injected subcutaneously with DPPE 1.2 and control animals received either Glucantime or PBS. The effect of DPPE 1.2 on cathepsin B activity of L. (L.) amazonensis amastigotes was assayed spectrofluorometrically by use of fluorogenic substrates. The main findings were: 1) axenic L. (L.) amazonensis promastigotes were destroyed by nanomolar concentrations of DPPE 1.2 (IC50 = 2.13 nM); 2) intracellular parasites were killed by DPPE 1.2 (IC50 = 128.35 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 = 1,267 nM); 3) one month after intralesional injection of DPPE 1.2 infected BALB/c mice showed a significant decrease of foot lesion size and a reduction of 97% of parasite burdens when compared to controls that received PBS; 4) DPPE 1.2 inhibited the cysteine protease activity of L. (L.) amazonensis amastigotes and more significantly the cathepsin B activity.

Conclusions/Significance

The present results demonstrated that DPPE 1.2 can destroy L. (L.) amazonensis in vitro and in vivo at concentrations that are non toxic to the host. We believe these findings support the potential use of DPPE 1.2 as an alternative choice for the chemotherapy of leishmaniasis.  相似文献   

15.
Miltefosine was the first oral compound approved for visceral leishmaniasis chemotherapy, and its efficacy against Leishmania donovani has been well documented. Leishmania amazonensis is the second most prevalent species causing cutaneous leishmaniasis and the main etiological agent of diffuse cutaneous leishmaniasis in Brazil. Driven by the necessity of finding alternative therapeutic strategies for a chronic diffuse cutaneous leishmaniasis patient, we evaluated the susceptibility to miltefosine of the Leishmania amazonensis line isolated from this patient, who had not been previously treated with miltefosine. In vitro tests against promastigotes and intracellular amastigotes showed that this parasite isolate was less susceptible to miltefosine than L. amazonensis type strains. Due to this difference in susceptibility, we evaluated whether genes previously associated with miltefosine resistance were involved. No mutations were found in the miltefosine transporter gene or in the Ros3 or pyridoxal kinase genes. These analyses were conducted in parallel with the characterization of L. amazonensis mutant lines selected for miltefosine resistance using a conventional protocol to select resistance in vitro, i.e., exposure of promastigotes to increasing drug concentrations. In these mutant lines, a single nucleotide mutation G852E was found in the miltefosine transporter gene. In vivo studies were also performed to evaluate the correlation between in vitro susceptibility and in vivo efficacy. Miltefosine was effective in the treatment of BALB/c mice infected with the L. amazonensis type strain and with the diffuse cutaneous leishmaniasis isolate. On the other hand, animals infected with the resistant line bearing the mutated miltefosine transporter gene were completely refractory to miltefosine chemotherapy. These data highlight the difficulties in establishing correlations between in vitro susceptibility determinations and response to chemotherapy in vivo. This study contributed to establish that the miltefosine transporter is essential for drug activity in L. amazonensis and a potential molecular marker of miltefosine unresponsiveness in leishmaniasis patients.  相似文献   

16.
This study is the first phytochemical investigation of Selaginella sellowii and demonstrates the antileishmanial activity of the hydroethanolic extract from this plant (SSHE), as well as of the biflavonoids amentoflavone and robustaflavone, isolated from this species. The effects of these substances were evaluated on intracellular amastigotes of Leishmania (Leishmania) amazonensis, an aetiological agent of American cutaneous leishmaniasis. SSHE was highly active against intracellular amastigotes [the half maximum inhibitory concentration (IC50) = 20.2 µg/mL]. Fractionation of the extract led to the isolation of the two bioflavonoids with the highest activity: amentoflavone, which was about 200 times more active (IC50 = 0.1 μg/mL) and less cytotoxic than SSHE (IC50 = 2.2 and 3 μg/mL, respectively on NIH/3T3 and J774.A1 cells), with a high selectivity index (SI) (22 and 30), robustaflavone, which was also active against L. amazonensis (IC50 = 2.8 µg/mL), but more cytotoxic, with IC50 = 25.5 µg/mL (SI = 9.1) on NIH/3T3 cells and IC50 = 3.1 µg/mL (SI = 1.1) on J774.A1 cells. The production of nitric oxide (NO) was lower in cells treated with amentoflavone (suggesting that NO does not contribute to the leishmanicidal mechanism in this case), while NO release was higher after treatment with robustaflavone. S. sellowii may be a potential source of biflavonoids that could provide promising compounds for the treatment of cutaneous leishmaniasis.  相似文献   

17.
Two antimicrobial cryptopeptides from the N1 domain of bovine lactoferrin, lactoferricin (LFcin17–30) and lactoferrampin (LFampin265–284), together with a hybrid version (LFchimera), were tested against the protozoan parasite Leishmania. All peptides were leishmanicidal against Leishmania donovani promastigotes, and LFchimera showed a significantly higher activity over its two composing moieties. Besides, it was the only peptide active on Leishmania pifanoi axenic amastigotes, already showing activity below 10?μM. To investigate their leishmanicidal mechanism, promastigote membrane permeabilization was assessed by decrease of free ATP levels in living parasites, entrance of the vital dye SYTOX Green (MW?=?600?Da) and confocal and transmission electron microscopy. The peptides induced plasma membrane permeabilization and bioenergetic collapse of the parasites. To further clarify the structural traits underlying the increased leishmanicidal activity of LFchimera, the activity of several analogues was assessed. Results revealed that the high activity of these hybrid peptides seems to be related to the order and sequence orientation of the two cryptopeptide moieties, rather than to their particular linkage through an additional lysine, as in the initial LFchimera. The incorporation of both antimicrobial cryptopeptide motifs into a single linear sequence facilitates chemical synthesis and should help in the potential clinical application of these optimized analogues.  相似文献   

18.
The in vitro leishmanicidal activity of miltefosine? (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.  相似文献   

19.
Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC(50) values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 μM, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate l-arginine and the cofactor Mn(2+) at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn(A)(2+) and Mn(B)(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones.  相似文献   

20.
Old World cutaneous leishmaniasis is caused by infection with Leishmania major and Leishmania tropica. Pentamidine and related dications exhibit broad spectrum antiprotozoal activity. Based on the previously reported efficacy of these compounds against related organisms, 18 structural analogs of pentamidine were evaluated for in vitro antileishmanial activity, using pentamidine as the standard reference drug for comparison. Furan analogs and reversed amidine compounds were examined for activity against L. major and L. tropica promastigotes. The most active compounds against both Leishmania species were in the reversed amidine series. DB745 and DB746 exhibited the highest activity against L. major and DB745 was the most active compound against L. tropica. Both of these compounds exhibited 50% inhibitory concentrations (IC50) below 1 nM for L. major. Ten reversed amidines were also tested for their ability to inhibit growth in an axenic amastigote model. Nine of 10 reversed amidine analogs were active at concentrations below 1 nM. These results justify further study of dicationic compounds as potential new agents for treating cutaneous leishmaniasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号