首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During its life cycle Trypanosoma rangeli crosses the hemolymph of its invertebrate host. In the present study, we demonstrate for the first time the uptake of lipophorin (Lp), the main lipid-transporting particle of insect hemolymph. We observed that living T. rangeli parasites uptake lipids from both 32P- and 3H-, or 125I-labeled Lp. However, the parasites do not uptake any other hemolymphatic protein such as 32P-labeled vitellogenin. The presence of a specific receptor to Lp in the parasite surface is suggested based on experiments using 125I-Lp. We also investigated the intracellular fate of lipids using Texas Red-labeled phosphatidylethanolamine-Lp. Parasites were observed under confocal microscope and displayed fluorescent-labeled lipids close to the flagellar pocket and in vesicles at the posterior region. In conclusion, this study raises a novel set of molecular events which takes place during vector-parasite interaction.  相似文献   

2.
In the present work we characterized the secreted phosphatase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. This housefly parasite hydrolyzed p-nitrophenylphosphate at a rate of 10.26 nmol Pi/mg protein/min. Classical inhibitors of acid phosphatases, such as sodium orthovanadate (NaVO3), sodium fluoride (NaF), and ammonium molybdate promoted a decrease in this phosphatase activity. When the parasites were assayed in the presence of sodium tartrate, an inhibitor of Leishmania spp-secreted acid phosphatases, this activity was drastically diminished. Cytochemical analysis showed the localization of this enzyme on the external surface and in the flagellar pocket of these parasites. Sodium tartrate inhibited this reaction, confirming the biochemical data. Platelet-activating factor (PAF) inhibited the phosphatase activity determined in the supernatant of living H. m. muscarum. Received: 2 February 2001 / Accepted: 5 March 2001  相似文献   

3.
In this work, we have analyzed the pathways by which lipophorin (Lp) delivers its lipid cargo to developing oocytes of Panstrongylus megistus, a hematophagous vector of Chagas’ disease. Lp, vitellin, total lipids and proteins were measured in ovarian tissues at different stages of the reproductive cycle. Localization of Lp in developing oocytes, mainly at their cortical area, was demonstrated by immunofluorescence assays using an anti-Lp antibody labeled with FITC. In vivo approaches injecting fluorescently labeled Lp to follow the course of the entire particle (Lp-DiI or Lp-Oregon Green) or its lipid cargo (Lp-Bodipy-FA) were monitored by laser scanning confocal microscopy. Significant increases in the amounts of lipids, proteins and vitellin were observed in ovarian tissue with the progress of vitellogenesis. Unexpectedly, an increase in the amount of Lp was also observed. The experiments in vivo demonstrated that the uptake of fluorescent Lp labeled on its protein or lipid moiety by developing oocytes occurred very fast, being impaired at low temperatures. The co-injection of fluorescent Lp and vitellogenin (Vg) showed that both particles co-localized inside yolk bodies, confirming the endocytic pathway for Lp. When the fate of lipids transferred to oocytes was evaluated in vitellogenic females by co-injecting Lp-Bodipy-FA and Lp-DiI, the signal for Bodipy-FA was found in both lipid droplets and yolk bodies. In contrast, in injected females kept at 4 °C the fluorescence was reduced, being observed exclusively in lipid droplets, implying that lipid transfer to the oocyte was diminished but not abolished. Taken together, the results demonstrate that in the hematophagous P. megistus, the storage of lipid resources by developing oocytes occurs by the convergence of different pathways by which Lp maximizes the delivery of its lipid cargo. In addition, it was also shown that, to some extent, lipids stored in the oocyte lipid droplets can also originate from endocytosed Vg. The relevance of these events in the context of the physiology of reproduction in P. megistus is discussed.  相似文献   

4.
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.  相似文献   

5.
6.
Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.  相似文献   

7.
Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.  相似文献   

8.
Irvin A. D. and Young E. R. 1979. Further studies on the uptake of tritiated nucleic acid precursors by Babesia spp. of cattle and mice. International Journal for Parasitology9: 109–114. An in vitro culture technique developed earlier was used to study the metabolism of nucleic acid precursors by Babesia microti and B. rodhaini of mice and by B. divergens and B. major of cattle. [3H]Hypoxanthine was readily incorporated by all species of parasite, and the presence of leucocytes did not affect this uptake. When parasites were maintained in culture their ability to incorporate [3H]hypoxanthine fell rapidly after 24 h, but when B. major was maintained at 4°C its subsequent ability to incorporate [3H]hypoxanthine persisted for at least 3 days. This finding could be of practical value in assessing infectivity of stored blood in vitro.On autoradiography, [3H]hypoxanthine appeared to be incorporated into both DNA and RNA of parasites. Salvage pathways for purine metabolism appeared to be important in all species of Babesia whereas for pyrimidine metabolism salvage pathways were more important for murine babesias and the de novo pathway more important for bovine species. This difference may relate to different permeabilities of bovine and murine erythrocyte membranes or may be a more fundamental species difference.  相似文献   

9.
Juvenile hormone (JH) controls insect development, metamorphosis and reproduction. In insect hemolymph a significant proportion of JH is bound to juvenile hormone binding protein (JHBP), which serves as a carrier supplying the hormone to the target tissues. To shed some light on JHBP passage within insect tissues, the interaction of this carrier with other proteins from Galleria mellonella (Lepidoptera) was investigated. Our studies revealed the presence of JHBP within the tracheal epithelium and fat body cells in both the membrane and cytoplasmic sections. We found that the interaction between JHBP and membrane proteins occurs with saturation kinetics and is specific and reversible. ATP synthase was indicated as a JHBP membrane binding protein based upon SPR-BIA and MS analysis. It was found that in G. mellonella fat body, this enzyme is present in mitochondrial fraction, plasma membranes and cytosol as well. In the model system containing bovine F1 ATP synthase and JHBP, the interaction between these two components occurs with Kd = 0.86 nM. In hemolymph we detected JHBP binding to apolipophorin, arylphorin and hexamerin. These results provide the first demonstration of the physical interaction of JHBP with membrane and hemolymph proteins which can be involved in JHBP molecule traffic.  相似文献   

10.
In this study, we examined the contribution of the four different pathways of phosphatidylethanolamine (PE) synthesis in the yeast Saccharomyces cerevisiae to the supply of this phospholipid to the plasma membrane. These pathways of PE formation are decarboxylation of phosphatidylserine (PS) by (i) phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria and (ii) phosphatidylserine decarboxylase 2 (Psd2p) in a Golgi/vacuolar compartment, (iii) incorporation of exogenous ethanolamine and ethanolamine phosphate derived from sphingolipid catabolism via the CDP-ethanolamine pathway in the endoplasmic reticulum (ER), and (iv) synthesis of PE through acylation of lyso-PE catalyzed by the acyl-CoA-dependent acyltransferase Ale1p in the mitochondria associated endoplasmic reticulum membrane (MAM). Deletion of PSD1 and/or PSD2 led to depletion of total cellular and plasma membrane PE level, whereas mutation in the other pathways had practically no effect. Analysis of wild type and mutants, however, revealed that all four routes of PE synthesis contributed not only to PE formation but also to the supply of PE to the plasma membrane. Pulse-chase labeling experiments with L[3H(G)]serine and [14C]ethanolamine confirmed the latter finding. Fatty acid profiling demonstrated a rather balanced incorporation of PE species into the plasma membrane irrespective of mutations suggesting that all four pathways of PE synthesis provide at least a basic portion of “correct” PE species required for plasma membrane biogenesis. In summary, the PE level in the plasma membrane is strongly influenced by total cellular PE synthesis, but fine tuned by selective assembly mechanisms.  相似文献   

11.

Background

Malaria is a devastating disease and Plasmodium falciparum is the most lethal parasite infecting humans. Understanding the biology of this parasite is vital in identifying potential novel drug targets. During every 48-hour intra-erythrocytic asexual replication cycle, a single parasite can produce up to 32 progeny. This extensive proliferation implies that parasites require substantial amounts of lipid precursors for membrane biogenesis. Glycerol kinase is a highly conserved enzyme that functions at the interface of lipid synthesis and carbohydrate metabolism. P. falciparum glycerol kinase catalyzes the ATP-dependent phosphorylation of glycerol to glycerol-3-phosphate, a major phospholipid precursor.

Methods

The P. falciparum glycerol kinase gene was disrupted using double crossover homologous DNA recombination to generate a knockout parasite line. Southern hybridization and mRNA analysis were used to verify gene disruption. Parasite growth rates were monitored by flow cytometry. Radiolabelling studies were used to assess incorporation of glycerol into parasite phospholipids.

Results

Disruption of the P. falciparum glycerol kinase gene produced viable parasites, but their growth was significantly reduced to 56.5 ± 1.8% when compared to wild type parasites. 14C-glycerol incorporation into the major phospholipids of the parasite membrane, phosphatidylcholine and phosphatidylethanolamine, was 48.4 ± 10.8% and 53.1 ± 5.7% relative to an equivalent number of wild type parasites.

Conclusions

P. falciparum glycerol kinase is required for optimal intra-erythrocytic asexual parasite development. Exogenous glycerol may be used as an alternative carbon source for P. falciparum phospholipid biogenesis, despite the lack of glycerol kinase to generate glycerol-3-phosphate.

General significance

These studies provide new insight into glycerolipid metabolism in P. falciparum.  相似文献   

12.
Herpetomonas megaseliae is a monoxenic trypanosomatid isolated from the phorid fly Megaselia scalaris . In the present report, the expression of cell surface sialoglycoconjugates in this parasite was analyzed by Western blotting, flow cytometry and fluorescence microscopy analyses using lectins that specifically recognize sialic acid residues. A strong reaction was detected when parasites were treated with Limax flavus, Maackia amurensis and Sambucus nigra lectins. Analysis of crude protein extracts by Western blotting revealed that bands with molecular masses ranging from 19 to 80 kDa were reactive to these lectins, which showed a sugar-inhibited recognition with the parasite extract. These results indicated that molecules containing α2,3- and α2,6-sialylgalactosyl sequences are present in this protozoan. The role of the surface sialomolecules in the interaction with explanted guts from Aedes aegypti was assessed. The interaction of H. megaseliae with the insect gut was strongly inhibited in the presence of mucin (71%), fetuin (68%) and sialyllactose (68%). Collectively, our results suggest a possible involvement of sialomolecules in the interaction between this insect trypanosomatid and the invertebrate host.  相似文献   

13.
Reproductive output of female Tenebrio molitor beetles is reduced upon infection with metacestodes of the rat tapeworm, Hymenolepis diminuta. We are using this as a model to investigate the adaptive significance of parasite-induced curtailment of insect reproduction. Production of the yolk protein vitellogenin (Vg) in the insect fat body is significantly reduced both in vitro and in vivo by metacestodes. Synthesis can be measured by using [14C]L-leucine incorporation, followed by immunoprecipitation. In this paper we demonstrate that a significant decrease in [14C]Vg can be produced by an acetic acid extract of the parasite. Conclusive evidence is presented that the active component(s) originate from the metacestodes: an extract of parasites grown entirely axenically has similar deleterious effects. The developmental stage of the metacestode is important: immature (stage I to II) parasites had greater capacity to suppress Vg synthesis than mature ones (stage V to VI). Examination of the chemical nature of the effector molecule(s) revealed that acetic-acid-extractable, boiling-resistant, pronase-sensitive agents in the molecular mass range 10 to 50 kDa reduced Vg synthesis by 47.4%. These data suggest that metacestodes produce a modulator molecule that directly affects insect vitellogenesis and, therefore, that reduction of host fitness may confer a selective advantage upon the parasite.  相似文献   

14.
Monoxenous trypanosomatids usually have an invertebrate as the only host in their life cycles, however, they have been found repeatedly in plants and/or mammals. To succeed in colonizing a vertebrate host, the parasite must quickly adapt to drastic changes in the environment (e.g. temperature), which reflect the conditions found in the insect and mammalian hosts. Leishmanolysin is a metalloprotease ubiquitously distributed in trypanosomatids, playing a myriad of functions. In Herpetomonas samuelpessoai, an insect trypanosomatid, the leishmanolysin-like molecule was implicated in the nutrition and insect adhesion. Herein, we showed that leishmanolysin expression is equally expressed in H. samuelpessoai parasites submitted to insect (26 °C) and mammalian (37 °C) temperatures. Also, the parasites grown in both temperatures interacted at similar rates with macrophages. Finally, we showed that leishmanolysin is involved in crucial steps in the interaction of H. samuelpessoai cells with macrophages, since the treatment with either anti-leishmanolysin antibodies or metalloprotease inhibitor 1,10-phenanthroline significantly reduced the association index. Similarly, the treatment of the macrophages with purified leishmanolysin promoted a powerful reduction in the association index, suggesting the direct involvement of macrophage receptors. These results suggest that H. samuelpessoai leishmanolysin molecules are not modulated by temperature and are involved in the interaction with mammalian cells.  相似文献   

15.
Host–parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host‐related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro‐ versus macroevolutionary dynamics in host–parasite interactions.  相似文献   

16.
Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days), but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ.  相似文献   

17.
Lipases have been implicated to be of importance in the life cycle development, virulence, and transmission of a variety of parasitic organisms. Potential functions include the acquisition of host resources for energy metabolism and as simple building blocks for the synthesis of complex parasite lipids important for membrane remodeling and structural purposes. Using a molecular approach, we identified and characterized the structure of an LdLip3-lipase gene from the primitive trypanosomatid pathogen of humans, Leishmania donovani. The LdLip3 encodes a ~33 kDa protein, with a well-conserved substrate-binding and catalytic domains characteristic of members of the serine lipase-protein family. Further, we showed that LdLip3 mRNA is constitutively expressed by both the insect vector (i.e., promastigote) and mammalian (i.e., amastigote) life cycle developmental forms of this protozoan parasite. Moreover, a homologous episomal expression system was used to express an HA epitope-tagged LdLip3 chimeric construct (LdLip3::HA) in these parasites. Expression of the LdLip3 chimera was verified in these transfectants by Western blots and indirect immuno-fluorescence analyses. Results of coupled immuno-affinity purification and enzyme activity experiments demonstrated that the LdLip3::HA chimeric protein was secreted/released by transfected L. donovani parasites and that it possessed functional lipase enzyme activity. Taken together these observations suggest that this novel secretory lipase might play essential role(s) in the survival, growth, and development of this important group of human pathogens.  相似文献   

18.
19.
20.
A unique variant strain of Chara corallina, which contains little inorganic phosphate in the vacuole ([Pi]v) was isolated. The level of cytoplasmic inorganic phosphate ([Pi]c) in these cells was the same as that in normal cells. Using these unique cells, we studied the change in [Pi]c and the effect of Pi on the activities of electrogenic H+-pumps associated with the plasma membrane and tonoplast. Upon illumination, the plasma membrane of C. corallina became hyperpolarized by 15 mV, the pH of the vacuolar sap decreased by 0.5 unit, and [Pi]c decreased by 30% with a similar time course. The activities of the electrogenic H +-pump in the plasma membrane and the ATP and PPi-dependent H+-transport in the tonoplast were noncompetitively inhibited by Pi with Ki values of, in the order given, 21.3 mM, 22.1 mM and 37.7 mM. From the kinetics study we calculated that the electrogenic H+-pump in the plasma membrane and the ATP and PPi-dependent H+ transport in the tonoplast were activated by, again in this order, 13%, 13% and 9%, in accordance with the decrease in [Pi]c. We propose that the change in [Pi]c is one of the regulators of photosynthesis-mediated activation of the H+-pumps in the plasma membrane and the tonoplast in C. corallina upon illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号