首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
抗体生产纯化技术   总被引:1,自引:0,他引:1  
自1997年FDA批准第一个治疗淋巴癌的嵌合单抗药物Rituxan,Anti-CD-20抗体上市,并进入56个国家,至2007年,FDA已批准了20多种治疗性单抗药物,约一半用于治疗癌症,7个已成为年销售额超10亿美元的“炸弹药物”。而随着高细胞密度培养及表达技术:大规模培养的表达水平从1g/L到5g/L;细胞的培养规模越来越大从12000L到15000L和在建的20000L细胞培养规模,同时多个细胞培养罐并行运行;这些都极大地推动了大规模蛋白质纯化技术的发展:从批产几公斤到年产几十公斤抗体,发展到批生产几十公斤至年产上十吨抗体的规模。同时,新型凝胶技术、更大规模的纯化生产系统技术和膜过滤技术的发展,使经典的三步层析技术能够缩短到两步层析技术生产抗体,进一步节约了投资,提高了产能和产率。详细介绍了最新发展的两步层析主导的一条完整抗体生产纯化解决方案。  相似文献   

2.
作为生物药物的”重磅炸弹”,大规模动物细胞培养生产治疗用单克隆抗体(以下简称单抗)已成为生物制药发展的主导。Mabselect SuRe亲和层析结合Capto Adhere复合离子交换两步层析工艺已经成为抗体生产工艺的亮点,而中空纤维膜过滤技术是一种快速高效的膜分离技术,具有容尘量高、温和低剪切力、操作灵活、成本低、易于放大等优点.因此广泛应用于重组蛋白、疫苗等生物制药领域。通过将中空纤维膜过滤技术和下游两步层析工艺相结合,可以成功的迎接几十甚至上百公斤单抗生产所面临的挑战。  相似文献   

3.
<正>灌注培养是一种众所周知的药物生产方法,多年来已被广泛的应用于许多生物技术药物的生产工艺中。最近,灌注培养还被用于高细胞密度的种子培养,以缩减放大到生产规模的种子培养步骤。随着细胞培养技术的不断改进,高密度补料分批培养与灌注培养的结合能够实现更高的细胞密度与产品表达浓度,因此,只需更小体积的生物反应器,便可生产治疗性蛋白质或抗体。细胞培养工艺开发能力越来越强,使用一次性反应器也将变得更具有优势,BIOSTATSRT一次性生物反应器能够提供最大可达2000L的生产规模,可以达到过去十至二十倍甚至更大的生物反应器才能实现的商业化生产规模。  相似文献   

4.
动物细胞大规模培养生产蛋白的工艺选择   总被引:2,自引:0,他引:2  
目前全世界蛋白治疗药物的迅速增长和市场需求已远远超过了现有生产能力。动物细胞规模化生产重组蛋白和抗体的工艺选择可考虑使用当前较成熟的工业化支持技术平台,以缩短产品工艺研发的时间,加快工业化进程。当前被FDA批准的生物技术产品以及公开发表的生产工艺占有主流优势的是搅拌式生物反应器悬浮培养,工艺设计是流加或灌流培养。其大规模细胞培养生产所面临的挑战是获得最大生产力的同时注重维持产品的质量;去除所有培养环境中外源因子的污染,更为精确有效的工艺控制手段,规模化培养中氧气的限定与溶解CO2浓度累积的控制等。  相似文献   

5.
生物制药中的灌注层析技术   总被引:1,自引:0,他引:1  
灌注层析技术替代传统层析技术为世界著名制药工业及科研机构制造厂更多成功的机会。我国生物活性物质与天然药物的研究开发需要借助强有力的快速分离纯化手段才能取是成功。本文介绍灌注层析技术的特点;灌流方式下的免疫检测技术;灌注层析纯化方法开发与优化,族大;在线生产监测;产品分析与定量;诊断试剂的自动制备;抗体片段的纯化;BioCAD系列生物工作站的技术特点。  相似文献   

6.
灌注层析技术替代传统层析技术为世界著名制药工业及科研机构创造了更多成功点。机会。我国生物活性物质与天然药物的研究开发需要借助强有力的快速分离纯化手段才能取得成功。本文介绍灌注层析技术的特点;灌流方式下的免疫检测技术;灌注层析纯化方法开发与优化,放大;在线生产监测;产品分析与定量;诊断试剂的自动化制备;抗体片段的纯化;BioCAD系列生物工作站的技术特点。  相似文献   

7.
从20年前美国FDA批准第一个治疗性抗体上市到今天治疗性抗体年销售额突破150亿美元而成为整个生物制药领域的生力军和中坚力量,治疗性抗体的发展顺利完成了从低谷到颠峰、从实验室到产业化、从青涩到成熟的转变,目前正以更加令人振奋的势头向前发展。治疗性抗体的出现为人类与疾病的抗争写下了亮丽的一笔。本文就治疗性抗体的历史与发展现状、目前所面临的问题、研制技术方法、治疗应用以及今后的发展趋势等几个方面对抗体作为治疗性药物的过去、现在和未来进行阐述。[第一段]  相似文献   

8.
单克隆抗体在生物学和医学研究领域中显示了极大的应用价值,是免疫检验中的新型试剂,是生物治疗的导向武器。作为医学检验试剂,单克隆抗体可以充分发挥其优势,如特异性好,灵敏度高,更便于质量控制,利于标准化和规范化。传统的方法是利用小鼠腹水制备单克隆抗体,但是近几十年杂交瘤细胞体外大规模培养制备单克隆抗体技术也在不断发展。特别是单克隆抗体在疾病诊断和治疗方面的需求,更进一步促进了杂交瘤细胞体外培养生产技术的发展,体外培养杂交瘤细胞生产的单克隆抗体已应用到许多方面。由于杂交瘤细胞的半贴壁性质,无论是悬浮培养还是贴壁培养,均可进行杂交瘤细胞的体外大规模培养。针对应用于体外诊断试剂的杂交瘤细胞体外培养制备单克隆抗体进行综述,主要包括中空纤维细胞培养和生物反应器细胞培养方法,以及不同培养方法优化的进展。  相似文献   

9.
本文考察了在2.5LcelliGen细胞培养器和国产20LcellCul-20细胞培养生物反应器中采用微载体技术培养细胞的情况。分析了用cellcul-20细胞培养生物反应器进行大规模培养时细胞的生长、代谢规律,研究了从2.5L扩大到20L规模的细胞转移条件。采用微载体球间直接转移技术。提高了接种效率,减少了接种步骤和污染机会。当国产GT一25微载体用量为5g/L,采用连续灌注工艺培养vero细胞,在国产20L cellCul—20细胞培养生物反应器中,连续培养5天,细胞数增加7倍,细胞密度超过1.0×107 cells/m】。本文开发的细胞培养工艺,对于中试及工业规模的动物细胞大量培养具有一定的指导意义。  相似文献   

10.
近年来,用于单抗药物生产的动物细胞大规模培养技术发展迅速.此领域的技术进展集中在个性化培养基开发,工艺条件优化等方面.本文总结了用于提高重组抗体表达水平的常用方法,以及细胞培养工艺对抗体药物“关键质量属性”(聚体、降解、糖基化修饰、电荷变异等)的诸多影响.此外,细胞培养工艺在产业化过程面临着工艺放大与技术转移,定性研究与工艺验证等实际问题.未来大规模细胞培养工艺的开发,将进一步借助动物细胞的组学研究成果和新兴的“过程分析技术”.  相似文献   

11.
抗ErbB2嵌合抗体chA21大规模纯化工艺的建立及质量研究   总被引:1,自引:0,他引:1  
自行研制的抗ErbB2嵌合抗体chA21具有抑制高表达ErbB2的乳腺癌细胞生长的作用。在前期小规模培养和纯化工作的基础上,以填充床生物反应器大规模培养CHO工程细胞株表达的上清为原料,采用亲和层析、凝胶过滤除盐、阳离子交换层析、分子筛等步骤,分离纯化嵌合抗体chA21,建立了大规模纯化工艺,并按照中国药典(2005年版第三部)对最终产品进行全面鉴定和质量控制。该工艺能有效解决抗体纯化过程形成的多聚体问题,去除内毒素和DNA残留;可以确保每批纯化20~40L培养上清,每批收获嵌合抗体可达5g以上,蛋白总回收率大于50%,纯度可达98%。研究结果表明,该抗体纯化工艺得率高,质量控制方法稳定可靠,适用于大规模生产。  相似文献   

12.
中试规模发酵重组人核苷二磷酸激酶A(rhNDPK-A)工程菌,并对表达产物进行纯化。摇瓶培养一级种子至合适密度,以10%比例接种二级种子培养基,在7L发酵罐中培养至OD600为9.6~10.5,然后转入80L发酵罐中进行补料分批培养,所得菌体裂解后,经离子交换层析和亲和层析两步纯化得重组蛋白制品。结果表明,50L培养液经过10h培养后,湿菌收量为1560 g/批,NDPK-A表达量为23.8%。另外,补料方式对发酵密度有明显影响。与单纯补加碳源相比,同时补加碳源和氮源可以显著提高菌体产量,但对目的蛋白表达量地提高不明显。在较优条件下,菌体产量为(2220.00±169.71) g/批,蛋白表达量为(22.00±0.42) %,纯化后重组蛋白得率为510mg/L。产物可溶、密度适中、工艺简便的中试发酵条件的建立为高得率、大规模制备重组rhNDPK-A奠定了基础。  相似文献   

13.
抗体技术历经动物血清多克隆抗体、杂交瘤单克隆抗体,以及重组基因工程抗体等不同发展时期,尤其是后者使得治疗性抗体的生产进入产业化阶段.在已上市的抗体药物中,人源化抗体、全人源抗体由于免疫原性小,临床药效好,目前已经成为抗体药物的主流.随着抗体药物在癌症、免疫调节等治疗领域的广泛应用.抗体产业已经成为国际制药行业的主要组成部分.我国的抗体产业由于品种不足、技术落后,尚处于起步阶段,其行业发展受限于诸多技术瓶颈,如:工程细胞系构建与筛选、大规模培养工艺开发,单抗的纯化与质控等,上述产业化关键技术的突破可加快我国抗体产业的发展进程.  相似文献   

14.
从CHO工程细胞培养上清初步纯化的uPA免疫BALB/c小鼠,通过杂交瘤技术制备单克隆抗体细胞株,取其中一株38-1-7株作高密度大量培养,细胞密度达13.2×106/mL时,抗体滴度为1∶61.44×104。用自制的uPA-Sepharose4B柱纯化抗体。抗体滴度提高243倍。纯化后的抗体与活化的Sepharose4B珠交联,制成IgG-Sepharose4B亲和层析抗体柱,亲和力常数:1.28×109(mol/L)-1,交联率:83.5%。直接从培养上清纯化uPA,纯度为96.3%,回收率:81.6%±19,纯化倍数:50倍左右,比活1.11±0.29×105。试验结果表明该法效果好,方法简单、操作方便、值得进一步研究和应用。  相似文献   

15.
用国产单克隆抗体纯化重组干扰素α1b的研究   总被引:3,自引:0,他引:3  
制备高纯度的重组干扰素α1b的关键技术是单克隆抗体亲和层析。我们过去用英国Celltech公司提供的抗干扰素α单克姓抗体珠进行纯化。为适应大规模生产的需要,我们用安科生物高科技公司所建的杂交瘤细胞分泌的干扰素单克隆抗体及其制备的抗体珠进行纯化,获得较好的结果,纯化IFNα1原液纯度(SDS-PAGE,HPLC,比活),鼠IgG及单克姓抗体珠的吸附量,使用次数等均符合要求,并用于大规模生产。  相似文献   

16.
重组分子抗体是一类潜在的治疗用药物,约占目前进入临床试验的生物制品类药物的三分之一,FDA批准上市的抗体药物有近十种,其中多数为重组的完整人源抗体(包括人鼠嵌合抗体和人源化抗体),本对基因工程完整抗体的有关实验研究进行了综述。  相似文献   

17.
在过去的十几年中,重组抗体工程在基础研究、医学和药物生产上已经成为最有希望的领域之一。重组抗体及其片段在正在进行诊断和治疗的临床试验中占所有生物蛋白的30%以上。研究集中在抗体作为理想的癌症靶向试剂方面,最近由于FDA批准使用第一个工程化治疗抗体而使热度达到极点。过去的几年中,在设计、筛选及生产新型工程化抗体方面已经取得了重大进展。改革的筛选方法已经能够分离出高亲和力的癌-靶向及抗病毒的抗体,后能够抑制病毒用于基因治疗。癌症诊断和治疗的另一个策略是将重组抗体片段与放射性同位素、药物、毒素、酶以及生物传感器表面进行融合。双特异性抗体及相关融合蛋白也已经生产出来用于癌症的免疫治疗,在抗癌疫苗以及T细胞补充策略上有效地增强了人免疫应答。  相似文献   

18.
为应对治疗性抗体快速增长的市场需求,抗体上游细胞培养规模和表达量水平已显著提高,而下游纯化工艺的生产效率则相对落后,下游处理能力已成为限制抗体产能的瓶颈。本研究以单克隆抗体mab-X为实验材料,优化了细胞培养液、低pH病毒灭活收集液2种模式的正辛酸(caprylic acid,CA)沉淀工艺条件,并研究了CA处理去除聚体、CA处理灭活病毒等2种应用,在小试的基础上,采用低pH病毒灭活收集液CA沉淀的模式进行了500 L细胞培养规模生产放大研究,对沉淀前后的产品质量和收率进行了检测和对比。结果显示,两种模式的CA沉淀均可显著降低宿主细胞蛋白(host cell protein,HCP)残留和聚体含量,在聚体去除实验中CA沉淀可去除约15%的聚体,病毒灭活研究显示CA对逆转录模型病毒具有完全的病毒灭活能力。在放大生产规模中,下游依次进行了深层过滤收获、亲和层析、低pH病毒灭活、CA沉淀及深层过滤、阳离子交换层析,CA沉淀过程中混合时间和搅拌速度显著影响CA沉淀效果,CA沉淀处理后低pH病毒灭活液中的HCP残留量降低了895倍,沉淀后产品纯度和HCP残留均已控制在单克隆抗体质量要求范围内,CA沉淀可以减少传统纯化工艺中的一个精纯步骤。总之,下游工艺中采用CA沉淀,能够精简传统纯化工艺,并完全满足mab-X的纯化质量要求,而且能提高生产效率、降低生产成本。本研究结果将推动CA沉淀在单克隆抗体下游纯化生产中的应用,为解决目前传统纯化工艺的问题提供参考。  相似文献   

19.
<正>治疗性抗体药物在生物医药中的研究发展是最快的。自1986年美国FDA批准第一个治疗性抗体上市以来,抗体药物的研发得到快速发展。迄今已有35个抗体药物批准上市,目前处在临床研究的抗体药物350多个,处在Ⅲ期临床研究的抗体药物约有30个,用于癌症、炎症或免疫疾病、高胆固醇、骨质  相似文献   

20.
赵亮  范里  张旭  谭文松 《生物工程学报》2009,25(7):1069-1076
抗-CD25单克隆抗体作为免疫抑制剂拥有广阔的市场前景和巨大的经济价值。本实验以表达抗?CD25单克隆抗体的GS-NS0细胞为研究对象,开发了支持其大规模培养和抗体表达的无血清低蛋白培养基,批培养最大活细胞密度和最大抗体浓度分别达3×106cells/mL和300mg/L以上,比商业无血清培养基(Excell 620+0.2% primatone)分别提高了100%和46%。通过批培养实验,研究了细胞的生长、葡萄糖和氨基酸代谢、以及产物表达特点,并揭示了批培养过程中初始葡萄糖浓度对GS-NS0细胞生长与代谢的影响规律。为优化GS-NS0细胞培养过程和抗CD25单抗成功迈向产业化提供了重要的科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号