首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Learning‐correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron‐specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity‐ and NMDAR‐dependent manner. In addition, Ng‐mediated potentiation of synaptic transmission mimics and occludes long‐term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng–CaM binding is necessary for Ng‐mediated potentiation. Moreover, knocking‐down Ng blocked LTP induction. Thus, Ng–CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.  相似文献   

2.
Numerous studies have now shown that the amyloid beta-protein (Abeta), the principal component of cerebral plaques in Alzheimer disease, rapidly and potently inhibits certain forms of synaptic plasticity. The amyloid (or Abeta) hypothesis proposes that the continuous disruption of normal synaptic physiology by Abeta contributes to the development of Alzheimer disease. However, there is little consensus about how Abeta mediates this inhibition at the molecular level. Using mouse primary hippocampal neurons, we observed that a brief treatment with cell-derived, soluble, human Abeta disrupted the activation of three kinases (Erk/MAPK, CaMKII, and the phosphatidylinositol 3-kinase-activated protein Akt/protein kinase B) that are required for long term potentiation, whereas two other kinases (protein kinase A and protein kinase C) were stimulated normally. An antagonist of the insulin receptor family of tyrosine kinases was found to mimic the pattern of Abeta-mediated kinase inhibition. We then found that soluble Abeta binds to the insulin receptor and interferes with its insulin-induced autophosphorylation. Taken together, these data demonstrate that physiologically relevant levels of naturally secreted Abeta interfere with insulin receptor function in hippocampal neurons and prevent the rapid activation of specific kinases required for long term potentiation.  相似文献   

3.
Long term potentiation and long term depression of synaptic responses in the hippocampus are thought to be critical for certain forms of learning and memory, although until recently it has been difficult to demonstrate that long term potentiation or long term depression occurs during hippocampus-dependent learning. Induction of long term potentiation or long term depression in hippocampal slices in vitro modulates phosphorylation of the alpha-amino-3-hydrozy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor subunit GluR1 at distinct phosphorylation sites. In long term potentiation, GluR1 phosphorylation is increased at the Ca2+/calmodulin-dependent protein kinase and protein kinase C site serine 831, whereas in long term depression, phosphorylation of the protein kinase A site serine 845 is decreased. Indeed, phosphorylation of one or both of these sites is required for long term synaptic plasticity and for certain forms of learning and memory. Here we demonstrate that training in a hippocampus-dependent learning task, contextual fear conditioning is associated with increased phosphorylation of GluR1 at serine 831 in the hippocampal formation. This increased phosphorylation is specific to learning, has a similar time course to that in long term potentiation, and like memory and long term potentiation, is dependent on N-methyl-D-aspartate receptor activation during training. Furthermore, the learning-induced increase in serine 831 phosphorylation is present at synapses and is in heteromeric complexes with the glutamate receptor subunit GluR2. These data indicate that a biochemical correlate of long term potentiation occurs at synapses in receptor complexes in a final, downstream, postsynaptic effector of long term potentiation during learning in vivo, further strengthening the link between long term potentiation and memory.  相似文献   

4.
Activation of the enzyme phospholipase (PLA 2) has been proposed to be part of the molecular mechanism involved in the alteration of 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) glutamate receptor responsiveness during long term changes in synaptic plasticity (long term potentiation). This study assesses the effect of the caveolin-1 scaffolding domain (CSD) on the activity of the regulatory enzyme PLA2. Caveolin-1 is a 22-kDa cholesterol-binding membrane protein known to inhibit the activity of most of its interacting partners. Our results show that the calcium-dependent cytosolic form of PLA2 (cPLA2) and caveolin-1 co-localized in mouse primary hippocampal neuron cultures and that they were co-immunoprecipitated from mouse hippocampal homogenates. A peptide corresponding to the scaffolding domain of caveolin-1 (Cav-(82-101)) dramatically inhibited cPLA2 activity in purified hippocampal synaptoneurosomes. Activation of endogenous PLA2 activity with KCl or melittin increased the binding of [3H]AMPA to its receptor. This effect was almost completely abolished by the addition of the CSD peptide to these preparations. Moreover, we demonstrated that the inhibitory action of the CSD peptide on AMPA receptor binding properties is specific (because a scrambled version of this peptide failed to have any effect) and that it is mediated by an inhibition of PLA2 enzymatic activity (because the CSD peptide failed to have an effect in membrane preparations lacking endogenous PLA2 activity). These results raised the possibility that caveolin-1, via the inhibition of cPLA2 enzymatic activity, may interfere with synaptic facilitation and long term potentiation formation in the hippocampus.  相似文献   

5.
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long‐term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging‐related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long‐term potentiation (LTP), in age‐related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82‐ to 84‐week‐old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani‐induced and dopaminergic agonist‐induced late‐LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell‐permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell‐permeable chelating agents.  相似文献   

6.
Stress dramatically affects the induction of hippocampal synaptic plasticity; however, the molecular details of how it does so remain unclear. Phosphatidylinositol 3-kinase (PI3K) signaling plays a crucial role in promoting neuronal survival and neuroplasticity, but its role, if any, in stress-induced alterations of long term potentiation (LTP) and long term depression (LTD) is unknown. We found here that inhibitors of PI3K signaling blocked the effects of acute restraint-tail shock stress protocol on LTP and LTD. Therefore, the purpose of the present study is to explore the signaling events involving PI3K in terms of its role in mediating stress protocol-induced alterations of LTP and LTD. We found that stress protocol-induced PI3K activation can be blocked by various inhibitors, including RU38486 for glucocorticoid receptors, LY294002 for PI3K, and dl-2-amino-5-phosphonopentanoic acid for N-methyl-D-aspartate receptors or brain-derived neurotrophic factor antisense oligonucleotides. Also, immunoblotting analyses revealed that stress protocol induced a profound and prolonged phosphorylation of numbers of PI3K downstream effectors, including 3-phosphoinositide-dependent protein kinase-1, protein kinase B, mammalian target of rapamycin (mTOR), p70 S6 kinase, and eukaryotic initiation factor 4B in hippocampal CA1 homogenate, which was prevented by the PI3K inhibitor pretreatment. More importantly, we found that stress protocol significantly increased the protein expression of dendritic scaffolding protein PSD-95 (postsynaptic density-95), which is known to be involved in LTP and LTD, in an mTOR-dependent manner. These results identify a key role of PI3K signaling in mediating the stress protocol-induced modification of hippocampal synaptic plasticity and further suggest that PI3K may do so by invoking the protein expression of PSD-95.  相似文献   

7.
Wnts are important for various developmental and oncogenic processes. Here we show that Wnt signaling functions at synapses in hippocampal neurons. Tetanic stimulations induce N-methyl-d-aspartate receptor-dependent synaptic Wnt3a release, nuclear beta-catenin accumulations, and the activation of Wnt target genes. Suppression of Wnt signaling impairs long term potentiation. Conversely, activation of Wnt signaling facilitates long term potentiation. These findings suggest that Wnt signaling plays a critical role in regulating synaptic plasticity.  相似文献   

8.
Mutations in the p21-activated kinase 3 gene (pak3) are responsible for nonsyndromic forms of mental retardation. Expression of mutated PAK3 proteins in hippocampal neurons induces abnormal dendritic spine morphology and long term potentiation anomalies, whereas pak3 gene invalidation leads to cognitive impairments. How PAK3 regulates synaptic plasticity is still largely unknown. To better understand how PAK3 affects neuronal synaptic plasticity, we focused on its interaction with the Nck adaptors that play a crucial role in PAK signaling. We report here that PAK3 interacts preferentially with Nck2/Grb4 in brain extracts and in transfected cells. This interaction is independent of PAK3 kinase activity. Selective uncoupling of the Nck2 interactions in acute cortical slices using an interfering peptide leads to a rapid increase in evoked transmission to pyramidal neurons. The P12A mutation in the PAK3 protein strongly decreases the interaction with Nck2 but only slightly with Nck1. In transfected hippocampal cultures, expression of the P12A-mutated protein has no effect on spine morphogenesis or synaptic density. The PAK3-P12A mutant does not affect synaptic transmission, whereas the expression of the wild-type PAK3 protein decreases the amplitude of spontaneous miniature excitatory currents. Altogether, these data show that PAK3 down-regulates synaptic transmission through its interaction with Nck2.  相似文献   

9.
A number of recent studies have used pharmacological inhibitors to establish a role for protein kinase Mζ (PKMζ) in synaptic plasticity and memory. These studies use zeta inhibitory peptide (ZIP) and chelerythrine as inhibitors of PKMζ to block long term potentiation and memory; staurosporine is used as a negative control to show that a nonspecific kinase inhibitor does not block long term potentiation and memory. Here, we show that neither ZIP nor chelerythrine inhibits PKMζ in cultured cells or brain slices. In contrast, staurosporine does block PKMζ activity in cells and brain slices by inhibiting its upstream phosphoinositide-dependent kinase-1. These studies demonstrate that the effectiveness of drugs against purified PKMζ may not be indicative of their specificity in the more complex environment of the cell and suggest that PKMζ is unlikely to be the mediator of synaptic plasticity or memory.  相似文献   

10.
Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. Here we show that a threshold level of NMDA receptor activation must be exceeded to trigger a stable loss of AMPA receptors from the surface of cultured hippocampal neurons. NMDA also causes displacement of protein kinase A from the synapse, and inhibiting protein kinase A (PKA) activity mimics the NMDA-induced loss of surface AMPA receptors. PKA is targeted to the synapse by an interaction with the A kinase-anchoring protein, AKAP79/150. Disruption of the PKA-AKAP interaction is sufficient to cause a long-lasting reduction in synaptic AMPA receptors in cultured neurons. In addition, we demonstrate in hippocampal slices that displacement of PKA from AKADs occludes synaptically induced long term depression. These data indicate that synaptic anchoring of PKA through association with AKAPs plays an important role in the regulation of AMPA receptor surface expression and synaptic plasticity.  相似文献   

11.
Synaptic plasticity following NMDA application on hippocampal slices from young (3-5 months) and aged (24-27 months) rats was compared. In young rats, NMDA (20 microM) induced opposite effects depending on the duration of the application. A short (1 min) or long (5 min) application induced a long-term depression of synaptic activity while a 3 min application induced a potentiation. In aged rats, however, NMDA application always induced depression, regardless of the duration. To identify mechanisms which could explain the difference observed between young and aged rats, we explored changes in NMDA receptor activation and changes in kinase/phosphatase balance. We first demonstrate that the potentiation present in slices from young rats was not restored in aged rats by exogenous application of the co-agonist of NMDA receptor d-serine (which compensates for the changes in NMDAR activation seen in aged rats). This suggested that alterations in synaptic plasticity activation mainly involve intracellular mechanisms. We next showed that the participation of the kinases PKA and CaMKII in the NMDA-induced potentiation in young rats is negligible. Finally, we determined the consequences of phosphatase inhibition in aged rats. Incubation of slices in okadaic acid (a PP1/PP2B antagonist) did not affect the depression induced by a 3min NMDA application in aged rats. The PP2B antagonist FK506 restored potentiation in aged rats (3 min NMDA application). In hippocampal neurons from aged rats, a depression is always observed, suggesting a preferential activation of PP2B by NMDA in these neurons.  相似文献   

12.
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.  相似文献   

13.
MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA‐181a (miR‐181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity‐related proteins at synapses. We have previously demonstrated that miR‐181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity‐related proteins. Here, we further investigated the underlying mechanisms by which miR‐181a negatively modulated synaptic plasticity and memory. In primary hippocampal cultures, we found that an activity‐dependent upregulation of the microRNA‐regulating protein, translin, correlated with reduction of miR‐181a upon chemical long‐term potentiation (cLTP), which induced upregulation of GluA2, a predicted target for miR‐181a, and other plasticity‐related proteins. Additionally, Aβ treatment inhibited cLTP‐dependent induction of translin and subsequent reduction of miR‐181a, and cotreatment with miR‐181a antagomir effectively reversed the effects elicited by Aβ but did not rescue translin levels, suggesting that the activity‐dependent upregulation of translin was upstream of miR‐181a. In mice, a learning episode markedly decreased miR‐181a in the hippocampus and raised the protein levels of GluA2. Lastly, we observed that inhibition of miR‐181a alleviated memory deficits and increased GluA2 and GluA1 levels, without restoring translin, in the 3xTg‐AD model. Taken together, our results indicate that miR‐181a is a major negative regulator of the cellular events that underlie synaptic plasticity and memory through AMPA receptors, and importantly, Aβ disrupts this process by suppressing translin and leads to synaptic dysfunction and memory impairments in AD.  相似文献   

14.
Actin‐based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin‐regulating protein, Eps8, is recruited to the spine head during chemically induced long‐term potentiation in culture and that inhibition of its actin‐capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin‐capping activity in spine morphogenesis and plasticity and indicate that reductions in actin‐capping proteins may characterize forms of intellectual disabilities associated with spine defects.  相似文献   

15.
16.
The expression of forms of synaptic plasticity, such as the phenomenon of long-term potentiation, requires the activity-dependent regulation of synaptic proteins and synapse composition. Here we show that ARMS (ankyrin repeat-rich membrane spanning protein)/Kidins220, a transmembrane scaffold molecule and BDNF TrkB substrate, is significantly reduced in hippocampal neurons after potassium chloride depolarization. The activity-dependent proteolysis of ARMS/Kidins220 was found to occur through calpain, a calcium-activated protease. Moreover, hippocampal long-term potentiation in ARMS/Kidins220(+/-) mice was enhanced, and inhibition of calpain in these mice reversed these effects. These results provide an explanation for a role for the ARMS/Kidins220 protein in synaptic plasticity events and suggest that the levels of ARMS/Kidins220 can be regulated by neuronal activity and calpain action to influence synaptic function.  相似文献   

17.
Calmodulin‐dependent kinase II (CaMKII) is key for long‐term potentiation of synaptic AMPA receptors. Whether CaMKII is involved in activity‐dependent plasticity of other ionotropic glutamate receptors is unknown. We show that repeated pairing of pre‐ and postsynaptic stimulation at hippocampal mossy fibre synapses induces long‐term depression of kainate receptor (KAR)‐mediated responses, which depends on Ca2+ influx, activation of CaMKII, and on the GluK5 subunit of KARs. CaMKII phosphorylation of three residues in the C‐terminal domain of GluK5 subunit markedly increases lateral mobility of KARs, possibly by decreasing the binding of GluK5 to PSD‐95. CaMKII activation also promotes surface expression of KARs at extrasynaptic sites, but concomitantly decreases its synaptic content. Using a molecular replacement strategy, we demonstrate that the direct phosphorylation of GluK5 by CaMKII is necessary for KAR‐LTD. We propose that CaMKII‐dependent phosphorylation of GluK5 is responsible for synaptic depression by untrapping of KARs from the PSD and increased diffusion away from synaptic sites.  相似文献   

18.
19.
Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.  相似文献   

20.
beta-Adrenergic receptors critically modulate long-lasting synaptic plasticity and long-term memory in the mammalian hippocampus. Persistent long-term potentiation of synaptic strength requires protein synthesis and has been correlated with some forms of hippocampal long-term memory. However, the intracellular processes that initiate protein synthesis downstream of the beta-adrenergic receptor are unidentified. Here we report that activation of beta-adrenergic receptors recruits ERK and mammalian target of rapamycin signaling to facilitate long-term potentiation maintenance at the level of translation initiation. Treatment of mouse hippocampal slices with a beta-adrenergic receptor agonist results in activation of eukaryotic initiation factor 4E and the eukaryotic initiation factor 4E kinase Mnk1, along with inhibition of the translation repressor 4E-BP. This coordinated activation of translation machinery requires concomitant ERK and mammalian target of rapamycin signaling. Taken together, our data identify distinct signaling pathways that converge to regulate beta-adrenergic receptor-dependent protein synthesis during long-term synaptic potentiation in the hippocampus. We suggest that beta-adrenergic receptors play a crucial role in gating the induction of long-lasting synaptic plasticity at the level of translation initiation, a mechanism that may underlie the ability of these receptors to influence the formation of long-lasting memories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号