共查询到20条相似文献,搜索用时 15 毫秒
1.
De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus 总被引:8,自引:0,他引:8 下载免费PDF全文
Luo G Hamatake RK Mathis DM Racela J Rigat KL Lemm J Colonno RJ 《Journal of virology》2000,74(2):851-863
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo. 相似文献
2.
De novo initiation pocket mutations have multiple effects on hepatitis C virus RNA-dependent RNA polymerase activities 下载免费PDF全文
Ranjith-Kumar CT Sarisky RT Gutshall L Thomson M Kao CC 《Journal of virology》2004,78(22):12207-12217
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has several distinct biochemical activities, including initiation of RNA synthesis by a de novo mechanism, extension from a primed template, nontemplated nucleotide addition, and synthesis of a recombinant RNA product from two or more noncovalently linked templates (template switch). All of these activities require specific interaction with nucleoside triphosphates (NTPs). Based on the structure of the HCV RdRp bound to NTP (S. Bressanelli, L. Tomei, F. A. Rey, and R. DeFrancesco, J. Virol. 76:3482-3492, 2002), we mutated the amino acid residues that contact the putative initiation GTP and examined the effects on the various activities. Although all mutations retained the ability for primer extension, alanine substitution at R48, R158, R386, R394, or D225 decreased de novo initiation, and two or more mutations abolished de novo initiation. While the prototype enzyme had a K(m) for GTP of 3.5 microM, all of the mutations except one had K(m)s that were three- to sevenfold higher. These results demonstrate that the affected residues are functionally required to interact with the initiation nucleotide. Unexpectedly, many of the mutations also affected the addition of nontemplated nucleotide, indicating that residues in the initiating NTP (NTPi)-binding pocket are required for nontemplated nucleotide additions. Interestingly, mutations in D225 are dramatically affected in template switch, indicating that this residue of the NTPi pocket also interacts with components in the elongation complex. We also examined the interaction of ribavirin triphosphate with the NTPi-binding site. 相似文献
3.
4.
De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase 总被引:1,自引:0,他引:1 下载免费PDF全文
Beerens N Selisko B Ricagno S Imbert I van der Zanden L Snijder EJ Canard B 《Journal of virology》2007,81(16):8384-8395
5.
Kim YC Russell WK Ranjith-Kumar CT Thomson M Russell DH Kao CC 《The Journal of biological chemistry》2005,280(45):38011-38019
Protein-RNA interaction plays a critical role in regulating RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). RNAs of 7 nucleotides (nt) or longer had affinities 5-fold better than an RNA of 5 nt, suggesting a minimal length required for binding. To identify RNA contact sites on the HCV RdRp, a biotinylated 7-nt RNA capable of directing de novo initiation was used in a process that coupled reversible formaldehyde cross-linking, RNA affinity chromatography, and mass spectrometry. By this process, we identified 18 peptides cross-linked to the 7-nt RNA. When these identified peptides were overlaid on the three-dimensional structures of NS5B, most mapped to the fingers subdomain, connecting loops between fingers and thumb subdomains and in the putative RNA binding channel. Two of the identified peptides resided in the active site cavity of the RdRp. Recombinant HCV RdRp with single residue changes in likely RNA contact sites were generated and characterized for effects on HCV RdRp activity. Mutant proteins had significant effects on cross-linking to 7-nt RNA and reduced RNA synthesis in vitro by 2- to 20-fold compared with wild type protein. When the mutations were tested for the replication of HCV RNA in the context of the cells transfected with the HCV subgenomic replicon, all except one prevented colony formation, indicating a defect in HCV RNA replication. These biochemical and functional analyses identified a number of residues in the HCV RdRp that are important for HCV RNA synthesis. 相似文献
6.
7.
Wang YK Rigat KL Sun JH Gao M Roberts SB 《Archives of biochemistry and biophysics》2008,470(2):146-152
The enzymatic activity of hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is modulated by the molar ratio of NS5B enzyme and RNA template. Depending on the ratio, either template or enzyme can inhibit activity. Inhibition of NS5B activity by RNA template exhibited characteristics of substrate inhibition, suggesting the template binds to a secondary site on the enzyme forming an inactive complex. Template inhibition was modulated by primer. Increasing concentrations of primer restored NS5B activity and decreased the affinity of template for the secondary site. Conversely, increasing template concentration reduced the affinity of primer binding. The kinetic profiles suggest template inhibition results from the binding of template to a site that interferes with primer binding and the formation of productive replication complexes. 相似文献
8.
Template nucleotide moieties required for de novo initiation of RNA synthesis by a recombinant viral RNA-dependent RNA polymerase 下载免费PDF全文
The recombinant RNA-dependent RNA polymerase of the bovine viral diarrhea virus specifically requires a cytidylate at the 3' end for the de novo initiation of RNA synthesis (C. C. Kao, A. M. Del Vecchio, and W. Zhong, Virology 253:1-7, 1999). Using RNAs containing nucleotide analogs, we found that the N3 and C4-amino group at the initiation cytidine were required for RNA synthesis. However, the ribose C2'-hydroxyl of the initiating cytidylate can accept several modifications and retain the ability to direct synthesis. The only unacceptable modification is a protonated C2'-amino group. Quite strikingly, the recognition of the functional groups for the initiation cytidylate and other template nucleotides are different. For example, a C5-methyl group in cytidine can direct RNA synthesis at all template positions except at the initiation cytidylate and C2'-amino modifications are tolerated better after the +11 position. When a 4-thiouracil (4sU) base analog that allows only imperfect base pairing with the nascent RNA is placed at different positions in the template, the efficiency of synthesis is correlated with the calculated stability of the template-nascent RNA duplex adjacent to the position of the 4sU. These results define the requirements for the specific interactions required for the initiation of RNA synthesis and will be compared to the mechanisms of initiation by other RNA-dependent and DNA-dependent RNA polymerases. 相似文献
9.
Subba-Reddy CV Tragesser B Xu Z Stein B Ranjith-Kumar CT Kao CC 《Journal of virology》2012,86(8):4317-4327
Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a. 相似文献
10.
The NS5B protein of classical swine fever virus (CSFV) is an important enzyme bearing a unique RNA-dependent RNA polymerase (RdRp) activity. The RdRp plays a crucial role in the viral replication cycle and in forming a replicase complex. However, the initiating synthesis mechanism of the CSFV RNA polymerase is unclearly described at present. Our aim is to reveal the RdRp-GTP docking sites and the effective modules of GTP initially bound to the polymerase in starting initiation of replication according to a well predicted CSFV RdRp model. Based on some known crystal structures of RNA polymerase, computational methods were used to establish the model of a CSFV RdRp. An analogous mechanism of CSFV RNA polymerase in de novo initiation was subsequently represented through docking a GTP into the structure model. The unique GTP binding pocket of the polymerase was pointed out: five residues E227, S408, R427, K435, and R439 involved in steady hydrogen bonds and two residues C407 and L232 involved in hydrophobic contact with the GTP. From a genetic evolutionary point of view, three residues C407, S408 and R427 have been suggested to be of particular importance by analysis of residue conservation. It is suggested that these crucial residues should have very significant function in the de novo initiation of the rigorous CSFV polymerase model, which can lead us to design experiments for studying the mechanism of viral replication and develop valid anti-viral drugs. 相似文献
11.
Ago H Adachi T Yoshida A Yamamoto M Habuka N Yatsunami K Miyano M 《Structure (London, England : 1993)》1999,7(11):1417-1426
12.
Template requirements for RNA synthesis by a recombinant hepatitis C virus RNA-dependent RNA polymerase 下载免费PDF全文
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp. 相似文献
13.
Specificity and mechanism analysis of hepatitis C virus RNA-dependent RNA polymerase 总被引:2,自引:0,他引:2
Johnson RB Sun XL Hockman MA Villarreal EC Wakulchik M Wang QM 《Archives of biochemistry and biophysics》2000,377(1):129-134
The RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene has been expressed as a nonfusion protein in bacterial cells and purified to homogeneity using sequential chromatographic columns. The purified NS5B protein exhibited RNA-dependent RNA polymerase activity using poly(A) template and the K(m) and V(max) were determined as 8.4 microM and 1976 pmol/mg-min, respectively. This full-length NS5B protein exhibited much stronger binding affinity toward the 30-mer poly(G) than other homopolymeric RNAs of the same size. For the first time, we demonstrate that the HCV NS5B was able to bind various ribonucleotides. Using a panel of oligonucleotides varying in length, we studied the NS5B catalytic efficiency and proposed the size of the NS5B active site to be 8-10 nucleotides. The multifunctional nature of NS5B protein is also discussed and compared with other viral RNA polymerases. 相似文献
14.
Internal initiation sites of de novo RNA synthesis within the hepatitis C virus polypyrimidine tract 总被引:1,自引:0,他引:1
Pellerin C Lefebvre S Little MJ McKercher G Lamarre D Kukolj G 《Biochemical and biophysical research communications》2002,292(3):682-688
Using fluorescein isothiocyanate (FITC)-conjugated H-2K(b) CTL epitope (SIINFEKL) as a model system, we investigated the antigen delivery route by pH-sensitive liposomes in vivo. Fluorescence was initially detected in lymph nodes at 3 h after immunization, and its intensity reached a peak value in superticial inguinal lymph node at 9 h. No trace could be detected in spleen even with prolonged monitoring for up to 24 h. These results strongly suggest that the presentation of CTL-peptide antigen vehicled by pH-sensitive liposomes exclusively occurs in lymph nodes. In mice immunized with the H-2K(b) CTL epitope encapsulated pH-sensitive liposomes, peptide-specific CTL response was detected at day 3. The response was strongly augmented by the second immunization and persisted up to at least 45 days. These results suggest that pH-sensitive liposome formula functions as a potential adjuvant of peptide antigens and is useful for the induction of antigen specific CTLsv in vivo. 相似文献
15.
Schmidt-Mende J Bieck E Hugle T Penin F Rice CM Blum HE Moradpour D 《The Journal of biological chemistry》2001,276(47):44052-44063
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention. 相似文献
16.
Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases 总被引:2,自引:0,他引:2
RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences. 相似文献
17.
18.
Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase 下载免费PDF全文
Wang QM Hockman MA Staschke K Johnson RB Case KA Lu J Parsons S Zhang F Rathnachalam R Kirkegaard K Colacino JM 《Journal of virology》2002,76(8):3865-3872
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data. 相似文献
19.
Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. 总被引:28,自引:0,他引:28 下载免费PDF全文
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B post-transfusion hepatitis. Its genome, a (+)-stranded RNA molecule of approximately 9.4 kb, encodes a large polyprotein that is processed by viral and cellular proteases into at least nine different viral polypeptides. As with other (+)-strand RNA viruses, the replication of HCV is thought to proceed via the initial synthesis of a complementary (-) RNA strand, which serves, in turn, as a template for the production of progeny (+)-strand RNA molecules. An RNA-dependent RNA polymerase has been postulated to be involved in both of these steps. Using the heterologous expression of viral proteins in insect cells, we present experimental evidence that an RNA-dependent RNA polymerase is encoded by HCV and that this enzymatic activity is the function of the 65 kDa non-structural protein 5B (NS5B). The characterization of the HCV RNA-dependent RNA polymerase product revealed that dimer-sized hairpin-like RNA molecules are generated in vitro, indicating that NS5B-mediated RNA polymerization proceeds by priming on the template via a 'copy-back' mechanism. In addition, the purified HCV NS5B protein was shown to perform RNA- or DNA oligonucleotide primer-dependent RNA synthesis on templates with a blocked 3' end or on homopolymeric templates. These results represent a first important step towards a better understanding of the life cycle of the HCV. 相似文献
20.
Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication 下载免费PDF全文
Moradpour D Brass V Bieck E Friebe P Gosert R Blum HE Bartenschlager R Penin F Lohmann V 《Journal of virology》2004,78(23):13278-13284
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins. 相似文献