首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A woodchuck-derived hepatitis delta virus (HDV) inoculum was created by transfection of a genotype I HDV cDNA clone directly into the liver of a woodchuck that was chronically infected with woodchuck hepatitis virus. All woodchucks receiving this inoculum became positive for HDV RNA in serum, and 67% became chronically infected, similar to the rate of chronic HDV infection in humans. Analysis of HDV sequences obtained at 73 weeks postinfection indicated that changes had occurred at a rate of 0.5% per year; many of these modifications were consistent with editing by host RNA adenosine deaminase. The appearance of sequence changes, which were not evenly distributed on the genome, was correlated with the course of HDV infection. A limited number of modifications occurred in the consensus sequence of the viral genome that altered the sequence of the hepatitis delta antigen (HDAg). All chronically infected animals examined exhibited these changes 73 weeks following infection, but at earlier times, only one of the HDV carriers exhibited consensus sequence substitutions. On the other hand, sequence modifications in animals that eventually recovered from HDV infection were apparent after 27 weeks. The data are consistent with a model in which HDV sequence changes are selected by host immune responses. Chronic HDV infection in woodchucks may result from a delayed and weak immune response that is limited to a small number of epitopes on HDAg.  相似文献   

2.
Hepatitis delta virus (HDV) is a subviral agent of humans which is dependent upon hepatitis B virus as a helper for transmission. HDV can be experimentally transmitted to woodchucks by using woodchuck hepatitis virus (WHV) as the helper. We used this model system to study two types of HDV infections: those of animals already chronically infected with WHV and those of animals without any evidence of prior exposure to WHV. At 5 to 10 days after infection with HDV, liver biopsies of these two groups of animals indicated that around 1% of the hepatocytes were infected (HDV antigen positive). Moreover, similar amounts of replicative forms of HDV RNA were detected. In contrast, by 20 days postinfection, the two groups of animals were quite different in the extent of the HDV infection. The animals chronically infected with WHV showed spread of the infection within the liver and the release of high titers of HDV into the serum. In contrast, the animals not previously exposed to WHV showed a progressive reduction in liver involvement, and at no time up to 165 days postinfection could we detect HDV particles in the serum. However, if these animals were inoculated with a relatively high titer of WHV at either 7 or even 33 days after the HDV infection, HDV viremia was observed. Our data support the interpretation that in these animals, hepatocytes were initially infected in the absence of helper virus, HDV genome replication took place, and ultimately these replicating genomes were rescued by the secondary WHV infection. The observation that HDV can survive in the liver for at least 33 days in the absence of coinfecting helper virus may be relevant to the reemergence of HDV infection following liver transplantation.  相似文献   

3.
Hepatitis delta virus (HDV) infection of individuals infected with hepatitis B virus (HBV) is associated with more severe liver damage and an increased risk of fulminant disease. HDV is a single-stranded RNA virus that encodes a single protein, the delta antigen, which is expressed in two forms, small (S-HDAg) and large (L-HDAg). Here we show that although HDV ribonucleoproteins are mainly detected in the nucleus, they are also present in the cytoplasm of cells infected with HDV or transfected with HDV cDNA. Making use of an heterokaryon assay, we demonstrate that HDV ribonucleoproteins shuttle continuously between the nucleus and the cytoplasm. In the absence of HDV RNA, both forms of the delta antigen are retained in the nucleus, whereas in the absence of the delta antigen, HDV RNA is predominantly detected in the cytoplasm. Coexpression of HDV RNA and S-HDAg (which binds to the viral RNA and contains a nuclear localization signal) results in nuclear accumulation of the viral RNA. This suggests that HDV RNA mediates export of viral particles to the cytoplasm whereas the delta antigen triggers their reimport into the nucleus.  相似文献   

4.
Hepatitis delta virus (HDV) infection and spread in vivo are dependent upon coinfection by hepatitis B virus (HBV), and dual HDV/HBV infection is frequently more severe than HBV infection alone, raising the possibility that HDV infection may be deleterious to cells. Here we have examined the effects of HDV replication on the long-term growth of cultured cells. Our results show that most cells transfected with HDV cDNA do not give rise to stable cell lines expressing viral antigens or replicative intermediates; in addition, cotransfection of HDV replicons with a plasmid vector expressing a hygromycin resistance marker results in a dose-dependent impairment of hygromycin-resistant colony formation. When cells transfected with replication-competent HDV cDNA are followed prospectively, a progressive decline in viral RNA replication and a steady decrease in the proportion of cells expressing delta antigen are observed. However, in transient transfection assays, no evidence was found to link HDV replication to apoptosis or to cell cycle arrest, nor did HDV replication confer on host cells enhanced sensitivity to inducers of apoptosis. Thus, HDV replication does not appear to be acutely cytotoxic. However, in dividing cells HDV replication is associated with a subtler growth disadvantage, leading to selection in culture for cells displaying diminished HDV expression. This effect would not be expected to cause hepatitis in vivo but might contribute to impaired liver regeneration in the setting of ongoing hepatocellular injury.  相似文献   

5.
Human hepatitis delta virus (HDV), obtained from the serum of an experimentally infected woodchuck, was injected into either the peritoneal cavity or the tail vein of both adult CB17 mice and mice with a severe combined immunodeficiency (CB17-scid mice). Three lines of evidence indicated that the virus was able to reach the liver and infect hepatocytes: (i) the amount of HDV genomic RNA detected in the liver by Northern (RNA) analysis increased during the first 5 to 10 days postinoculation, reaching a peak that was about threefold the amount in the original inoculum; (ii) also detected in the liver was the viral antigenomic RNA, which is complementary to the genomic RNA found in virions, and is diagnostic for virus replication; and (iii) by immunoperoxidase staining of liver sections, the delta antigen was detected in the nuclei of scattered cells identifiable as hepatocytes. In all of the mice, clearance of the infection occurred between 10 and 20 days after inoculation. The half-life for clearance was about 3 days in CB17-scid mice, indicating that clearance of infection did not involve a T- and B-cell-dependent immune response. Cell-to-cell spread of the initial infection was not detected. One possible interpretation of our results is that HDV infection of hepatocytes is directly cytopathic. Also, the results imply that chronic infection of the liver in humans may require continuous spread of virus within the liver. Alternatively, HDV in the absence of helper virus may be unable to cause a chronic infection of hepatocytes in vivo.  相似文献   

6.
M Y Kuo  M Chao    J Taylor 《Journal of virology》1989,63(5):1945-1950
Beginning with three partial cDNA clones of the RNA genome of human hepatitis delta virus (HDV), we assembled the complete 1,679-base sequence on a single molecule and then inserted a trimer of this into plasmid pSLV, a simian virus 40-based eucaryotic expression vector. This construct was used to transfect both monkey kidney (COS7) and human hepatocellular carcinoma (HuH7) cell lines. In this way we obtained replication of the HDV RNA genome and the appearance, in the nucleoli, of the delta antigen, the only known virus-coded protein. This proved both that the HDV genome could replicate in nonliver as well as liver cells and that there was no requirement for the presence of hepatitis B virus sequences or proteins. When the pSVL construct was made with a dimer of an HDV sequence with a 2-base-pair deletion in the open reading frame, genome replication was reduced at least 40-fold. However, when we cotransfected with a plasmid that expressed the correct delta antigen, the mutated dimer achieved a level of genome replication comparable to that of the nonmutated sequence. We thus conclude that the delta antigen can act in trans and is essential for replication of the HDV genome.  相似文献   

7.
8.
9.
The infectivity of hepatitis B virus (HBV) produced in vitro by HepG2 cells transfected with HBV DNA (HepG2T14) has been assayed in a chimpanzee. Following inoculation, the chimpanzee underwent a typical course of type B hepatitis infection, characterized by elevation of serum aminotransferases and by histological identification of hepatic damage. Hepatitis B surface antigen and core-related antigen appeared in the serum at weeks 5 and 7, respectively, after infection. HBV DNA was detected in serum samples, and replicative forms of the HBV genome were identified in liver biopsies. Subtype identification of hepatitis B surface antigen and restriction enzyme analysis of HBV DNA in both the inoculum and the serum of the infected chimpanzee confirmed that the hepatitis B infection observed in this animal was caused by viral particles produced by HepG2T14 cells. These findings indicate that, although HepG2 cells do not seem to be susceptible to infection by HBV in vitro, they can produce biologically active infectious virions after transfection with cloned HBV DNA.  相似文献   

10.
The woodchuck hepatitis virus is a naturally occurring hepatitis B-like virus that infects the eastern woodchuck. Direct immunofluorescence staining for woodchuck hepatitis virus core antigen in liver biopsies demonstrated the presence of this antigen in 14 of 17 chronically infected woodchucks, and in 8 of 10 woodchucks undergoing acute infections. Fluorescent localization of woodchuck hepatitis virus core antigen was typically cytoplasmic, and this was confirmed further by electron microscopy. Experimental infection with woodchuck hepatitis virus was achieved in four of four woodchucks inoculated with serum from chronic carrier woodchucks. All infected animals developed a self-limited disease characterized by seroconversion to antibodies against the major viral antigens (core and surface antigens); naturally acquired acute infection demonstrated a similar course. A chimpanzee seronegative for all markers of hepatitis B virus developed a subclinical infection after inoculation with woodchuck hepatitis virus.  相似文献   

11.
The hepatitis delta virus (HDV) is coated with large (L), middle (M), and small (S) envelope proteins encoded by coinfecting hepatitis B virus (HBV). To study the role of the HBV envelope proteins in the assembly and infectivity of HDV, we produced three types of recombinant particles in Huh7 cells by transfection with HBV DNA and HDV cDNA: (i) particles with an envelope containing the S HBV envelope protein only, (ii) particles with an envelope containing S and M proteins, and (iii) particles with an envelope containing S, M, and L proteins. Although the resulting S-, SM-, and SML-HDV particles contained both hepatitis delta antigen and HDV RNA, only particles coated with all three envelope proteins (SML) showed evidence of infectivity in an in vitro culture system susceptible to HDV infection. We concluded that the L HBV envelope protein, and more specifically the pre-S1 domain, is important for infectivity of HDV particles and that the M protein, which has been reported to bear a site for binding to polymerized albumin in the pre-S2 domain, is not sufficient for infectivity. Our data also show that the helper HBV is not required for initiation of HDV infection. The mechanism by which the L protein may affect HDV infectivity is discussed herein.  相似文献   

12.
Efficient assembly of hepatitis delta virus (HDV) was achieved by cotransfection of Huh7 cells with two plasmids: one to provide expression of the large, middle, and small envelope proteins of hepatitis B virus (HBV), the natural helper of HDV, and another to initiate replication of the HDV RNA genome. HDV released into the media was assayed for HDV RNA and HBV envelope proteins and characterized by rate-zonal sedimentation, immunoaffinity purification, electron microscopy, and the ability to infect primary human hepatocytes. Among the novel findings were that (i) immunostaining for delta antigen 6 days after infection with 300 genome equivalents (GE) per cell showed only 1% of cells as infected, but this was increased to 16% when 5% polyethylene glycol was present during infection; (ii) uninfected cells did not differ from infected cells in terms of albumin accumulation or the presence of E-cadherin at cell junctions; and (iii) sensitive quantitative real-time PCR assays detected HDV replication even when the multiplicity of infection was 0.2 GE/cell. In the future, this HDV assembly and infection system can be further developed to better understand the mechanisms shared by HBV and HDV for attachment and entry into host cells.  相似文献   

13.
A simple rapid detection of antibody to hepatitis delta virus (anti-HDV) in human serum was developed by using double antigen sandwich ELISA. HDV gene fragment encoding HDAg was isolated from a Chinese patient infected with HDV by RT-PCR, and a high-efficient expression HD-PQE31 strain was constructed with the fragment. We obtained high titer and good quality hepatitis delta virus protein purified by Ni-NTA metal-affinity chromatography, which was identified by Western blot and ELISA, then we set up the double antigen sandwich ELISA for detection of anti-HDV in human serum, and the performance of the sandwich ELISA was evaluated in terms of specificity and sensitivity. Results were: 1) The purified HDAg protein's purity was 90%, and its ELISA titer was 1/100 000. 2) 42 anti-HDV positive sera were detected and showed that the sensitivity of sandwich ELISA was higher than that of competitive ELISA (t=2.44, p<0.01). 3) The inhibitory rates for 2 anti-HDV positive sera by the specific HDAg were 74% and 93% respectively. 4) For the assay of specificity, all 60 samples infected by other hepatitis viruses and 30 normal samples were negative for anti-HDV. These results suggested that the double antigen sandwich ELISA with purified recombinant HDAg showed higher specificity and sensitivity, It can be used in routine laboratories to diagnose the HDV infection.  相似文献   

14.
S Ratnam  C B Head  R W Butler 《CMAJ》1986,134(8):905-907
Epidemiologic knowledge of hepatitis D virus (HDV) infection is limited. A seroepidemiologic study was undertaken to determine the prevalence of the infection in Newfoundland and Labrador. Between October 1983 and October 1985 over 200 people were recognized through routine serodiagnosis and screening as having hepatitis B seromarkers. A total of 223 serum samples from 186 of these people were tested for anti-HDV. The subjects were mainly asymptomatic carriers of hepatitis B surface antigen or patients with acute or chronic hepatitis B from the native Indian and Inuit and the non-native populations. None of the serum samples were positive for anti-HDV. The absence of anti-HDV in a substantial number of people in the province who are infected with hepatitis B virus is strong evidence that HDV infection is not prevalent in the local population, including native people.  相似文献   

15.
J C Wu  P J Chen  M Y Kuo  S D Lee  D S Chen    L P Ting 《Journal of virology》1991,65(3):1099-1104
The hepatitis delta virus (HDV) is a defective virus with a coat composing of the surface antigen of its helper virus, hepatitis B virus (HBV). Replication of HDV in the absence of HBV has been shown in cell cultures by transient transfection of the HDV plasmid. However, the formation and release of HDV virions have not been observed. In this report, a human hepatoma cell line HuH-7 was transiently cotransfected with HDV and HBV plasmids. The production of monomeric and multimeric antigenomic RNAs of HDV in the transfected cells indicated replication of the HDV genome. The major 3.5- and 2.1-kb RNAs of HBV were also expressed. Virions of both HDV and HBV were released from the cotransfected cells, as shown by the detection of monomeric genomic HDV RNA and partially double-stranded HBV DNA in the culture medium. Thus, this is the first report that describes the assembly and the release of HDV viral particles in an in vitro cell culture. The HDV virions released possessed physicochemical properties identical to those of the HDV virions found in infected human serum. Furthermore, expression of both the 3.5- and 2.1-kb RNAs of HBV was shown to be dramatically decreased by the presence of HDV, indicating suppression of the expression of HBV genes by HDV. The amount of HBV virions released was similarly suppressed by HDV. Cotransfection of HBV with an expression plasmid of the HDV delta antigen remarkably reduced the levels of the 3.5- and 2.1-kb HBV RNAs, indicating that suppression of the expression of HBV RNAs by HDV occurs via the action of the delta antigen. This HBV- and HDV-cotransfected human hepatoma cell line should provide an excellent system for the study of the function of the delta antigen and the interaction between HDV and its helper, HBV.  相似文献   

16.
Simultaneous infection with hepatitis delta virus (HDV) and hepatitis B virus (HBV) in humans is often associated with severe viral liver disease including fulminant hepatitis. Since HBV is thought to be noncytopathic to the hepatocyte, the enhanced disease severity observed during dual infection has been attributed to either simultaneous immune responses against the two viruses or direct cytotoxic effects of HDV products on the hepatocyte or both. To examine these alternate possibilities, we produced transgenic mice that express the small and large delta antigens (HDAg) in hepatocyte nuclei at levels equal to those observed during natural HDV infection. No biological or histopathological evidence of liver disease was detectable during 18 months of observation, suggesting that neither the large nor small form of HDAg is directly cytopathic to the hepatocyte in vivo.  相似文献   

17.
Assembly of hepatitis delta virus particles.   总被引:25,自引:22,他引:3       下载免费PDF全文
W S Ryu  M Bayer    J Taylor 《Journal of virology》1992,66(4):2310-2315
Hepatitis delta virus (HDV) is a subviral satellite of hepatitis B virus (HBV). Since the RNA genome of HDV can replicate in cultured cells in the absence of HBV, it has been suggested that the only helper function of HBV is to supply HBV coat proteins in the assembly process of HDV particles. To examine the factors involved in such virion assembly, we transiently cotransfected cells with various hepadnavirus constructs and cDNAs of HDV and analyzed the particles released into the medium. We report that the HDV genomic RNA and the delta antigen can be packaged by coat proteins of either HBV or the related hepadnavirus woodchuck hepatitis virus (WHV). Among the three co-carboxy-terminal coat proteins of WHV, the smallest form was sufficient to package the HDV genome; even in the absence of HDV RNA, the delta antigen could be packaged by this WHV coat protein. Also, of the two co-amino-terminal forms of the delta antigen, only the larger form was essential for packaging.  相似文献   

18.
Hepatitis delta virus (HDV) infection of human hepatocytes infected with the hepatitis B virus (HBV) is associated with increased liver damage and risk of fulminant disease. Although considerable progress has been made towards the elucidation of the mechanisms of HDV replication and pathogenesis, little is still known about the host factors involved in the different steps of the replication cycle. Here, we made use of a proteomic approach to analyse the global alterations in protein expression that arise in human hepatocytes separately transfected with each of the HDV components. Huh7 cells were transiently transfected with plasmids that code for the small delta antigen (S-HDAg), large delta antigen (L-HDAg), genomic RNA (gRNA), and antigenomic RNA (agRNA), respectively. Total protein extracts were separated by 2-DE and differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 32 proteins known to be involved in different pathways namely nucleic acid metabolism, protein metabolism, transport, signal transduction, apoptosis, and cell growth. Moreover, the down regulation of hnRNP D, HSP105, and triosephosphate isomerase was further confirmed by Real time PCR.  相似文献   

19.
Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen.  相似文献   

20.
Tissue culture system for infection with human hepatitis delta virus.   总被引:10,自引:10,他引:0       下载免费PDF全文
An in vitro culture system was developed for assaying the infectivity of the human hepatitis delta virus (HDV). Hepatocytes were isolated from chimpanzee liver and grown in a serum-free medium. Cells were shown to be infectible by HDV and to remain susceptible to infection for at least 3 weeks in culture, as evidenced by the appearance of RNA species characteristic of HDV replication as early as 6 days postinfection. When repeated experiments were carried out on cells derived from an animal free of hepatitis B virus (HBV), HDV infection occurred in a consistent fashion but there was no indication of infection with the HBV that was present in the inoculum. Despite numerous attempts with different sources of HBV inocula free of HDV, there was no evidence that indicated susceptibility of these cells to HBV infection. This observation may indicate that HBV and HDV use different modes of entry into hepatocytes. When cells derived from an HBV-infected animal were exposed to HDV, synthesis and release of progeny HDV particles were obtained in addition to HBV replication and production of Dane particles. Although not infectible with HBV, primary cultures of chimpanzee hepatocytes are capable of supporting part of the life cycle of HBV and the entire life cycle of HDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号