首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloned duck hepatitis B virus DNA is infectious in Pekin ducks   总被引:4,自引:13,他引:4       下载免费PDF全文
Approximately 10% of German-bred Pekin ducks were found to be chronically infected with duck hepatitis B virus (DHBV). The genomes of three German DHBV isolates analyzed were closely related but showed substantial restriction site polymorphism compared with U.S. isolates. We tested the infectivity of three sequence variants of cloned DHBV DNA by injecting them into the liver of virus-free ducklings. Most of these animals injected with double-stranded closed-circular or plasmid-integrated dimer DHBV DNA developed viremia, demonstrating the infectivity of all three cloned DHBV DNA variants. The cloned viruses produced were indistinguishable from those from naturally infected animals, implying that our experimental approach can be used to perform a functional analysis of the DHBV genome.  相似文献   

2.
The infectivity of hepatitis B virus (HBV) produced in vitro by HepG2 cells transfected with HBV DNA (HepG2T14) has been assayed in a chimpanzee. Following inoculation, the chimpanzee underwent a typical course of type B hepatitis infection, characterized by elevation of serum aminotransferases and by histological identification of hepatic damage. Hepatitis B surface antigen and core-related antigen appeared in the serum at weeks 5 and 7, respectively, after infection. HBV DNA was detected in serum samples, and replicative forms of the HBV genome were identified in liver biopsies. Subtype identification of hepatitis B surface antigen and restriction enzyme analysis of HBV DNA in both the inoculum and the serum of the infected chimpanzee confirmed that the hepatitis B infection observed in this animal was caused by viral particles produced by HepG2T14 cells. These findings indicate that, although HepG2 cells do not seem to be susceptible to infection by HBV in vitro, they can produce biologically active infectious virions after transfection with cloned HBV DNA.  相似文献   

3.
4.
5.
Hepatitis delta virus (HDV) particles were produced in Huh7 human hepatoma cells by transfection with cloned hepatitis B virus (HBV) DNA and HDV cDNA. The particles were characterized by their buoyant density, the presence of encapsidated viral RNA, and their ability to infect primary cultures of chimpanzee hepatocytes. Successful infection was evidenced by the appearance of increasing amounts of intracellular HDV RNA after exposure to particles. Infection was prevented when particles were incubated with antibodies directed against synthetic peptides specific for epitopes of the pre-S1 or pre-S2 domains of the HBV envelope proteins before exposure to hepatocytes. These data demonstrate that HDV particles produced in vitro are infectious and indicate (i) that infectious particles are coated with HBV envelope proteins that contain the pre-S1 and pre-S2 regions, (ii) that epitopes of the pre-S1 and pre-S2 domains of HBV envelope proteins are exposed at the surface of HDV particles, and (iii) that antibodies directed against those epitopes have neutralizing activity against HDV.  相似文献   

6.
Hepatitis delta virus (HDV) causes both acute and chronic liver disease throughout the world. Effective medical therapy is lacking. Previous work has shown that the assembly of HDV virus-like particles (VLPs) could be abolished by BZA-5B, a compound with farnesyltransferase inhibitory activity. Here we show that FTI-277, another farnesyltransferase inhibitor, prevented the production of complete, infectious HDV virions of two different genotypes. Thus, in spite of the added complexity and assembly determinants of infectious HDV virions compared to VLPs, the former are also sensitive to pharmacological prenylation inhibition. Moreover, production of HDV genotype III virions, which is associated with particularly severe clinical disease, was as sensitive to prenylation inhibition as was that of HDV genotype I virions. Farnesyltransferase inhibitors thus represent an attractive potential class of novel antiviral agents for use against HDV, including the genotypes associated with most severe disease.  相似文献   

7.
C Sureau  B Guerra    H Lee 《Journal of virology》1994,68(6):4063-4066
The hepatitis delta virus (HDV) envelope contains the large (L), middle (M), and small (S) surface proteins encoded by coinfecting hepatitis B virus. Although HDV-like particles can be assembled with only the S protein in the envelope, the L protein is essential for infectivity in vitro (C. Sureau, B. Guerra, and R. Lanford, J. Virol. 67:366-372, 1993). Here, we demonstrate that the M protein, previously described as carrying a site for binding to polymerized human albumin, is not necessary for infectivity. HDV-like particles coated with the S plus L or the S plus M plus L proteins are infectious in primary cultures of chimpanzee hepatocytes. We conclude that the S and L proteins serve two essential functions in the HDV replication cycle; the S protein ensures the export of the HDV genome from an infected cell by forming a particle, and the L protein ensures its import into a human hepatocyte.  相似文献   

8.
Phosphorylation of the hepatitis delta virus antigens.   总被引:2,自引:2,他引:0       下载免费PDF全文
V Bichko  S Barik    J Taylor 《Journal of virology》1997,71(1):512-518
We used two-dimensional electrophoresis (nonequilibrium pH gradient electrophoresis followed by sodium dodecyl sulfate-10% polyacrylamide gel electrophoresis) coupled with 32P labeling and immunoblotting detection with 125I-protein A to detect and quantitate phosphorylation of the large and small forms of the delta antigen (deltaAg-L and deltaAg-S, respectively). Analysis of deltaAg species from the serum and liver of an infected woodchuck as well as deltaAg species expressed in and secreted from transfected Huh7 cells revealed the following. (i) No detectable phosphorylation of deltaAg-S occurred. (ii) In virions from the serum of an infected animal and in the particles secreted from cotransfected cells, none of the deltaAg-L was phosphorylated. (iii) Only in the infected liver and in transfected cells was any phosphorylation detected; it corresponded to a monophosphorylated form of deltaAg-L. Given these results, we carried out serine-to-alanine mutagenesis of the deltaAg-L to determine whether the monophosphorylation was predominantly at a specific site on the unique 19-amino-acid (aa) extension. We mutated each of the two serines, aa 207 and 210, on this extension and also the serine at aa 177. These three mutations had no significant effect on phosphorylation. In contrast, mutagenesis to alanine of the cysteine at aa 211, which normally acts as the acceptor for farnesylation, completely inhibited phosphorylation. Our interpretation is that the site(s) of phosphorylation is probably not in the 19-aa extension unique to deltaAg-L and that phosphorylation of deltaAg-L may depend upon prior farnesylation. The possible significance of the intracellular phosphorylated forms of deltaAg-L is discussed.  相似文献   

9.
Hepatitis A virus antigen was purified from early acute-phase chimpanzee stools by a rapid three-step procedure using 7% polyethylene glycol precipitation, CsCl banding, and Sepharose 2B column chromatography. Electron microscopic examination of the hepatitis A virus entigen preparation revealed highly purified hepatitis A virus particles.  相似文献   

10.
Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle, showing that HDV RNA synthesis was resistant to L-HDAg when it was overexpressed 3 days after HDV RNA replication had initiated. Finally, we showed that, contrary to conventional thinking, L-HDAg alone, at a certain molar ratio with HDV RNA, can initiate HDV RNA replication. Thus, L-HDAg does not inherently inhibit HDV RNA synthesis. Taken together, these results indicated that L-HDAg affects neither the rate of HDV RNA synthesis nor the final steady-state level of HDV RNA and that L-HDAg is unlikely to act as an inhibitor of HDV RNA replication in the natural HDV replication cycle.  相似文献   

11.
Assembly of hepatitis delta virus particles.   总被引:3,自引:22,他引:3       下载免费PDF全文
W S Ryu  M Bayer    J Taylor 《Journal of virology》1992,66(4):2310-2315
Hepatitis delta virus (HDV) is a subviral satellite of hepatitis B virus (HBV). Since the RNA genome of HDV can replicate in cultured cells in the absence of HBV, it has been suggested that the only helper function of HBV is to supply HBV coat proteins in the assembly process of HDV particles. To examine the factors involved in such virion assembly, we transiently cotransfected cells with various hepadnavirus constructs and cDNAs of HDV and analyzed the particles released into the medium. We report that the HDV genomic RNA and the delta antigen can be packaged by coat proteins of either HBV or the related hepadnavirus woodchuck hepatitis virus (WHV). Among the three co-carboxy-terminal coat proteins of WHV, the smallest form was sufficient to package the HDV genome; even in the absence of HDV RNA, the delta antigen could be packaged by this WHV coat protein. Also, of the two co-amino-terminal forms of the delta antigen, only the larger form was essential for packaging.  相似文献   

12.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

13.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:1,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

14.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

15.
16.
A circular trans-acting hepatitis delta virus ribozyme.   总被引:5,自引:3,他引:5       下载免费PDF全文
A circular trans-acting ribozyme designed to adopt the motif of the hepatitis delta virus (HDV) trans-acting ribozyme was produced. The circular form was generated in vitro by splicing a modified group I intron precursor RNA in which the relative order of the 5' and 3' splice sites, flanking the single HDV-like ribozyme sequence-containing exon, is reversed. Trans-cleavage activity of the circular HDV-like ribozyme was comparable to linear permutations of HDV ribozymes containing the same core sequence, and was shown not to be due to linear contaminants in the circular ribozyme preparation. In nuclear and cytoplasmic extracts from HeLa cells, the circular ribozyme had enhanced resistance to nuclease degradation relative to a linear form of the ribozyme, suggesting that circularization may be a viable alternative to chemical modification as a means of stabilizing ribozymes against nuclease degradation.  相似文献   

17.
A total of 17 antibodies, raised in several nonhuman species and specific for different regions on the delta antigen (delta Ag), were used to map, via immunoprecipitation, those domains exposed on the surface of the viral ribonucleoprotein (RNP). These studies showed that the domains for the nuclear localization signal and the C-terminal extension, unique to the large form of delta Ag, are exposed. Also exposed is the C-terminal region of the small form of delta Ag. In contrast, reactivity was not found with the coiled-coil domain needed for protein dimerization. When the hepatitis delta virus (HDV) RNA was released by treatment of viral RNP with vanadyl ribonucleoside complexes, no change in the pattern of delta Ag epitope presentation was detected, consistent with the interpretation that a multimeric protein structure persists in the absence of RNA. These RNP studies have implications not only for understanding of the process of HDV assembly but also for evaluation of the immune responses of an infected host to HDV replication.  相似文献   

18.
Substitution rates were estimated for the coding and noncoding regions of the hepatitis delta virus (HDV). The estimated rates of synonymous substitution in HDV were lower than the rates of substitution at nonsynonymous sites and in the noncoding region. HDV has lower synonymous substitution rates than the hepatitis C virus, though both are RNA viruses. The relatively low rate of synonymous substitution in HDV may be due to a strong preference of G and C nucleotides at third codon positions. Variation in substitution rate among HDV lineages may be correlated with the clinical development of the HDV-induced hepatitis. The phylogenetic tree inferred for 24 HDV strains reveals similarities between lineages isolated from the same geographic region. Correspondence to: W.-H. Li  相似文献   

19.
Chimpanzees were examined for the effect of viral hepatitis infections on specific and nonspecific immune response mechanisms. The data suggest that infection with either hepatitis B virus or hepatitis non-A, non-B virus may result in suppression of cellular immune response components. Mitogen-induced lymphocyte proliferation was lower in virus-infected chimpanzees than in naive animals. Neutrophils from virus infected animals exhibited decreased or altered chemiluminescence kinetics.  相似文献   

20.
Relating structure to function in the hepatitis delta virus antigen.   总被引:20,自引:17,他引:3       下载免费PDF全文
Hepatitis delta virus expresses two forms of a single protein, the small (delta Ag-S) and large (delta Ag-L) antigens, which are identical except for an additional 19 residues present at the C terminus of delta Ag-L. While delta Ag-S is required to promote genome replication, delta Ag-L potently inhibits this process and also facilitates packaging of the viral genome by envelope proteins of the helper virus (hepatitis B virus). Regions within the antigens responsible for nuclear localization, RNA binding, and dimerization have been identified, yet it is not clear how these particular activities contribute to the ultimate replication and packaging phenotypes. Here we report the following findings. (i) Although the removal of the nuclear localization signal from either antigen resulted in significant cytoplasmic accumulation, both proteins still had access to the nucleus. As a consequence, no functional defect was observed with either mutant. (ii) The RNA-binding domain, although necessary for delta Ag-S function, could be deleted from delta Ag-L without compromising its ability to either inhibit replication or promote packaging. (iii) In contrast, the coiled-coil dimerization domain was required for both the activation of replication by delta Ag-S and the inhibition of replication by delta Ag-L. This region, with an additional 20 amino acids C-terminal to it, was necessary and sufficient to potently inhibit replication by interacting with the small antigen. (iv) The packaging property of delta Ag-L required a C-terminal Pro/Gly-rich region which is hypothesized to interact with the hepatitis B virus envelope proteins during the assembly process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号