首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the cellular proteins involved in simian virus 40 (SV40) replication, extracts derived from human 293 cells have been fractionated into multiple components. When such fractions are combined with the virus-encoded T antigen (TAg) and SV40 origin containing plasmid DNA, efficient and complete replication is achieved, while each fraction alone is inactive. At present, a minimum of eight such cellular components have been identified. Previous experiments have demonstrated one of these to be the cell-cycle-regulated proliferating-cell nuclear antigen (PCNA). As PCNA has been identified as a processivity factor for DNA polymerase δ, we suggest that both polymerases α and β are involved in this system. Three further fractions have been identified. One is a partially purified fraction which, under certain conditons, is required with TAg for the formation of a pre-synthesis complex of proteins at the replication origin. The second of these factors, RF-A, is a complex of three polypeptides which may function as a eucaryotic SSB. The third, RF-C, is a factor which is required, with PCNA, for coordinated leading- and lagging-strand synthesis at the replication fork. Complete synthesis and segregation of the daughter molecules also requires the presence of topoisomerases I and II. These results suggest a model for DNA synthesis which involves multiple stages prior to and during replicative DNA synthesis.  相似文献   

2.
DNA replication from the SV40 origin can be reconstituted in vitro using purified SV40 large T antigen, cellular topoisomerases I and II, replication factor A (RF-A), proliferating cell nuclear antigen (PCNA), replication factor C (RF-C), and a phosphocellulose fraction (IIA) made from human cell extracts (S100). Fraction IIA contains all DNA polymerase activity required for replication in vitro in addition to other factors. A newly identified factor has been purified from fraction IIA. This factor is required for complete reconstitution of SV40 DNA replication and co-purifies with a PCNA-stimulated DNA polymerase activity. This DNA polymerase activity is sensitive to aphidicolin, but is not inhibited by butylanilinodeoxyadenosine triphosphate or by monoclonal antibodies which block synthesis by DNA polymerase alpha. The polymerase activity is synergistically stimulated by the combination of RF-A, PCNA, and RF-C in an ATP-dependent manner. Purified calf thymus polymerase delta can fully replace the purified factor in DNA replication assays. We conclude that this factor, required for reconstitution of SV40 DNA replication in vitro, corresponds to human DNA polymerase delta.  相似文献   

3.
A number of proteins have been isolated from human cells on the basis of their ability to support DNA replication in vitro of the simian virus 40 (SV40) origin of DNA replication. One such protein, replication factor C (RFC), functions with the proliferating cell nuclear antigen (PCNA), replication protein A (RPA), and DNA polymerase delta to synthesize the leading strand at a replication fork. To determine whether these proteins perform similar roles during replication of DNA from origins in cellular chromosomes, we have begun to characterize functionally homologous proteins from the yeast Saccharomyces cerevisiae. RFC from S. cerevisiae was purified by its ability to stimulate yeast DNA polymerase delta on a primed single-stranded DNA template in the presence of yeast PCNA and RPA. Like its human-cell counterpart, RFC from S. cerevisiae (scRFC) has an associated DNA-activated ATPase activity as well as a primer-template, structure-specific DNA binding activity. By analogy with the phage T4 and SV40 DNA replication in vitro systems, the yeast RFC, PCNA, RPA, and DNA polymerase delta activities function together as a leading-strand DNA replication complex. Now that RFC from S. cerevisiae has been purified, all seven cellular factors previously shown to be required for SV40 DNA replication in vitro have been identified in S. cerevisiae.  相似文献   

4.
Interactions between SV40 T antigen and DNA polymerase alpha   总被引:16,自引:0,他引:16  
Simian virus 40 large T antigen is the only viral protein required for SV40 DNA synthesis in vivo and in vitro. This complex protein recruits the cellular DNA replication apparatus to the SV40 origin and provides a good model for the initiation of cellular DNA replication. The interaction between SV40 large T antigen (TAg) and DNA polymerase alpha has been shown previously to be inhibited by murine p53, the nuclear protein product of a cellular anti-oncogene. The murine p53 protein will inhibit SV40 replication both in vivo and in vitro. Using monoclonal antibodies to TAg, p53, and polymerase alpha, we developed immunoassays to measure the complexes formed between TAg and polymerase alpha and between TAg and p53. The assays allowed us to detect the TAg-polymerase alpha and TAg-p53 complexes in lytically infected and transformed cells. The amount of TAg complexed to p53 was far lower in infected cells than in transformed cells. We used a large range of monoclonal antibodies to different sites on T antigen and found that antibodies that inhibited the formation of the TAg-polymerase alpha complex also inhibited the formation of the TAg-p53 complex. Finally, we found that the tsA58 and 5080 point mutations in TAg, previously shown to inhibit the binding of TAg to p53, also inhibit its binding to polymerase alpha. Together these results emphasize the specificity and functional importance of the TAg-polymerase alpha complex. The disruption of this interaction by the cellular anti-oncogene p53 provides an interesting model for the normal action of p53 and the effects of its removal on the regulation of cellular DNA synthesis.  相似文献   

5.
Study of the proteins involved in DNA replication of a model system such as SV40 is a first step in understanding eukaryotic chromosomal replication. Using a cell-free system that is capable of replicating plasmid DNA molecules containing the SV40 origin of replication, we conducted a series of systematic fractionation-reconstitution experiments for the purpose of identifying and characterizing the cellular proteins involved in SV40 DNA replication. In addition to the one viral-encoded replication protein, T antigen, we have identified and begun to characterize at least six cellular components from a HeLa cytoplasmic extract that are absolutely required for SV40 DNA replication in vitro. These include: (i) two partially purified fractions, CF IC and CF IIA, and (ii) four proteins that have been purified to near homogeneity, replication protein-A, proliferating cell nuclear antigen, DNA polymerase alpha-primase complex, and topoisomerase (I and II). Replication protein-A is a multi-subunit protein that has single-stranded DNA binding activity and is required for a T antigen-dependent, origin-dependent unwinding reaction which may be an important early step in initiation of replication. Fraction CF IC can stimulate this unwinding reaction, suggesting that it also may function during initiation. Proliferating cell nuclear antigen, DNA polymerase alpha-primase, and CF IIA all appear to be involved in elongation of nascent chains.  相似文献   

6.
A cell-free DNA replication system dependent upon five purified cellular proteins, one crude cellular fraction, and the simian virus 40 (SV40)-encoded large tumor antigen (T antigen) initiated and completed replication of plasmids containing the SV40 origin sequence. DNA synthesis initiated at or near the origin sequence after a time lag of approximately 10 min and then proceeded bidirectionally from the origin to yield covalently closed, monomer daughter molecules. The time lag could be completely eliminated by a preincubation of SV40 ori DNA in the presence of T antigen, a eucaryotic single-stranded DNA-binding protein (replication factor A [RF-A]), and topoisomerases I and II. In contrast, if T antigen and the template DNA were incubated alone, the time lag was only partially decreased. Kinetic analyses of origin recognition by T antigen, origin unwinding, and DNA synthesis suggest that the time lag in replication was due to the formation of a complex between T antigen and DNA called the T complex, followed by formation of a second complex called the unwound complex. Formation of the unwound complex required RF-A. When origin unwinding was coupled to DNA replication by the addition of a partially purified cellular fraction (IIA), DNA synthesis initiated at the ori sequence, but the template DNA was not completely replicated. Complete DNA replication in this system required the proliferating-cell nuclear antigen and another cellular replication factor, RF-C, during the elongation stage. In a less fractionated system, another cellular fraction, SSI, was previously shown to be necessary for reconstitution of DNA replication. The SSI fraction was required in the less purified system to antagonize the inhibitory action of another cellular protein(s). This inhibitor specifically blocked the earliest stage of DNA replication, but not the later stages. The implications of these results for the mechanisms of initiation and elongation of DNA replication are discussed.  相似文献   

7.
Replication factors A and C (RF-A and RF-C) and the proliferating cell nuclear antigen (PCNA) differentially augment the activities of DNA polymerases alpha and delta. The mechanism of stimulation by these replication factors was investigated using a limiting concentration of primed, single-stranded template DNA. RF-A stimulated polymerase alpha activity in a concentration-dependent manner, but also suppressed nonspecific initiation of DNA synthesis by both polymerases alpha and delta. The primer recognition complex, RF-C.PCNA.ATP, stimulated pol delta activity in cooperation with RF-A, but also functioned to prevent abnormal initiation of DNA synthesis by polymerase alpha. Reconstitution of DNA replication with purified factors and a plasmid containing the SV40 origin sequences directly demonstrated DNA polymerase alpha dependent synthesis of lagging strands and DNA polymerase delta/PCNA/RF-C dependent synthesis of leading strands. RF-A and the primer recognition complex both affected the relative levels of leading and lagging strands. These results, in addition to results in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1950-1960), suggest that an exchange of DNA polymerase complexes occurs during initiation of bidirectional DNA replication at the SV40 origin.  相似文献   

8.
Human cell extracts support the replication of SV40 DNA, whereas mouse cell extracts do not. Species specificity is determined at the level of initiation of DNA replication, and it was previously found that this requires the large subunit, p180, of DNA polymerase alpha-primase to be of human origin. Furthermore, a functional interaction between SV40 large T antigen (TAg) and p180 is essential for viral DNA replication. In this study we determined that the N-terminal regions of human p180, which contain the TAg-binding sites, can be replaced with those of murine origin without losing the ability to support SV40 DNA replication in vitro. The same substitutions do not prevent SV40 TAg from stimulating the activity of DNA polymerase alpha-primase on single-stranded DNA in the presence of replication protein A. Furthermore, biophysical studies show that the interactions of human and murine DNA polymerase alpha-primase with SV40 TAg are of a similar magnitude. These studies strongly suggest that requirement of SV40 DNA replication for human DNA polymerase alpha depends neither on the TAg-binding site being of human origin nor on the strength of the binary interaction between SV40 TAg and DNA polymerase alpha-primase but rather on sequences in the C-terminal region of human p180.  相似文献   

9.
Cellular factors required for papillomavirus DNA replication.   总被引:8,自引:5,他引:3       下载免费PDF全文
T Melendy  J Sedman    A Stenlund 《Journal of virology》1995,69(12):7857-7867
In vitro replication of papillomavirus DNA has been carried out with a combination of purified proteins and partially purified extracts made from human cells. DNA synthesis requires the viral E1 protein and the papillomavirus origin of replication. The E2 protein stimulates DNA synthesis in a binding site-independent manner. Papillomavirus DNA replication is also dependent on the cellular factors replication protein A, replication factor C, and proliferating-cell nuclear antigen as well as a phosphocellulose column fraction (IIA). Fraction IIA contains DNA polymerase alpha-primase and DNA polymerase delta. Both of these polymerases are essential for papillomavirus DNA replication in vitro. However, unlike the case with T-antigen-dependent replication from the simian virus 40 origin, purified DNA polymerase alpha-primase and delta cannot efficiently replace fraction IIA in the replication reaction. Hence, additional cellular factors seem to be required for papillomavirus DNA replication. Interestingly, replication factor C and proliferating-cell nuclear antigen are more stringently required for DNA synthesis in the papillomavirus system than in the simian virus 40 in vitro system. These distinctions indicate that there must be mechanistic differences between the DNA replication systems of papillomavirus and simian virus 40.  相似文献   

10.
The replication of simian virus 40 has been studied by using cell-free extracts derived from human 293 cells. Fractionation of this extract has led to the identification of three fractions that are required for efficient DNA synthesis. Initial fractionation of the crude extract by phosphocellulose chromatography has produced two fractions, I and II, neither of which is able to support replication separately, but when they are combined, efficient synthesis is restored. Both fractions are required, with SV40 T antigen, for the formation of a presynthesis complex at the SV40 origin. The major replication enzymes, DNA polymerase, DNA primase and the topoisomerases I and II all reside in fraction II. Fraction I has been subdivided into two subfractions (A and B) by DEAE-cellulose chromatography. Fraction A is essential for replication and is required for presynthesis complex formation. Fraction B stimulates DNA replication and is only required at the elongation stage. This multicomponent system has provided the foundation for identification of individual components that are required for DNA replication in vitro.  相似文献   

11.
The proliferating cell nuclear antigen (PCNA) is a highly conserved protein required for the assembly of the DNA polymerase delta (pol delta) holoenzyme. Because PCNAs from Saccharomyces cerevisiae and human do not complement each other using in vitro or in vivo assays, hybrids of the two proteins would help identify region(s) involved in the assembly of the pol delta holoenzyme. Two mutants of human PCNA, HU1 (D21E) and HU3 (D120E), and six hybrids of human and S. cerevisiae PCNA, HC1, HC5, CH2, CH3, CH4, and CH5, were prepared by swapping corresponding regions between the two proteins. In solution, all PCNA assembled into trimers, albeit to different extents. These PCNA variants were tested for stimulation of pol delta and in vitro replication of M13 and SV40 DNA as well as to stimulate the ATPase activity of replication factor C (RF-C). Our data suggest that in addition to the interdomain connecting loop and C terminus, an additional site in the N terminus is required for pol delta interaction. PCNA mutants and hybrids that stimulated pol delta and RF-C were deficient in M13 and SV40 DNA replication assays, indicating that PCNA-induced pol delta stimulation and RF-C-mediated loading are not sufficient for coordinated DNA synthesis at a replication fork.  相似文献   

12.
Plasmids containing the SV40 origin replicate in the presence of SV40 T antigen and a cell free extract derived from human 293 cells. Upon fractionation of this extract, two essential replication factors have been identified. One of these is a multi-subunit DNA binding protein containing polypeptides of 70,000, 34,000 and 11,000 daltons which may function as a eukaryotic single strand DNA binding protein (SSB). The other partially purified fraction is required with T antigen for the first stage of DNA replication, the formation of a pre-synthesis complex at the replication origin. These results, and others, define multiple stages of SV40 DNA replication in vitro which are analogous to multiple stages of Escherichia coli and phage lambda replication, and may reflect similar events in the replication of cellular chromosomes.  相似文献   

13.
T antigen and template requirements for SV40 DNA replication in vitro.   总被引:70,自引:7,他引:63       下载免费PDF全文
A cell-free system for replication of SV40 DNA was used to assess the effect of mutations altering either the SV40 origin of DNA replication or the virus-encoded large tumor (T) antigen. Plasmid DNAs containing various portions of the SV40 genome that surround the origin of DNA replication support efficient DNA synthesis in vitro and in vivo. Deletion of DNA sequences adjacent to the binding sites for T antigen either reduce or prevent DNA synthesis. This analysis shows that sequences that had been previously defined by studies in vivo to constitute the minimal core origin sequences are also necessary for DNA synthesis in vitro. Five mutant T antigens containing amino acid substitutions that affect SV40 replication have been purified and their in vitro properties compared with the purified wild-type protein. One protein is completely defective in the ATPase activity of T antigen, but still binds to the origin sequences. Three altered proteins are defective in their ability to bind to origin DNA, but retain ATPase activity. Finally, one of the altered T antigens binds to origin sequences and contains ATPase activity and thus appears like wild-type for these functions. All five proteins fail to support SV40 DNA replication in vitro. Interestingly, in mixing experiments, all five proteins efficiently compete with the wild-type protein and reduce the amount of DNA replication. These data suggest that an additional function of T antigen other than origin binding or ATPase activity, is required for initiation of DNA replication.  相似文献   

14.
The replication of DNA containing either the polyoma or SV40 origin has been done in vitro. Each system requires its cognate large-tumour antigen (T antigen) and extracts from cells that support its replication in vivo. The host-cell source of DNA polymerase alpha - primase complex plays an important role in discriminating between polyoma T antigen and SV40 T antigen-dependent replication of their homologous DNA. The SV40 origin- and T antigen-dependent DNA replication has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, HeLa DNA polymerase alpha - primase complex, eukaryotic topoisomerase I and a single-strand DNA binding protein from HeLa cells are required. The latter activity, isolated solely by its ability to support SV40 DNA replication, sediments and copurifies with two major protein species of 72 and 76 kDa. Although crude fractions yielded closed circular monomer products, the purified system does not. However, the addition of crude fractions to the purified system resulted in the formation of replicative form I (RFI) products. We have separated the replication reaction with purified components into multiple steps. In an early step, T antigen in conjunction with a eukaryotic topoisomerase (or DNA gyrase) and a DNA binding protein, catalyses the conversion of a circular duplex DNA molecule containing the SV40 origin to a highly underwound covalently closed circle. This reaction requires the action of a helicase activity and the SV40 T antigen preparation contains such an activity. The T antigen associated ability to unwind DNA copurified with other activities intrinsic to T antigen (ability to support replication of SV40 DNA containing the SV40 origin, poly dT-stimulated ATPase activity and DNA helicase).  相似文献   

15.
The isolation of DNA polymerase (Pol) epsilon from extracts of HeLa cells is described. The final fractions contained two major subunits of 210 and 50 kDa which cosedimented with Pol epsilon activity, similar to those described previously (Syvaoja, J., and Linn, S. (1989) J. Biol. Chem. 264, 2489-2497). The properties of the human Pol epsilon and the yeast Pol epsilon were compared. Both enzymes elongated singly primed single-stranded circular DNA templates. Yeast Pol epsilon required the presence of a DNA binding protein (SSB) whereas human Pol epsilon required the addition of SSB, Activator 1 and proliferating cell nuclear antigen (PCNA) for maximal activity. Both enzymes were totally unable to elongate primed DNA templates in the presence of salt; however, activity could be restored by the addition of Activator 1 and PCNA. Like Pol delta, Pol epsilon formed complexes with SSB-coated primed DNA templates in the presence of Activator 1 and PCNA which could be isolated by filtration through Bio-Gel A-5m columns. Unlike Pol delta, Pol epsilon bound to SSB-coated primed DNA in the absence of the auxiliary factors. In the presence of salt, Pol epsilon complexes were less stable than they were in the absence of salt. In the in vitro simian virus 40 (SV40) T antigen-dependent synthesis of DNA containing the SV40 origin of replication, yeast Pol epsilon but not human Pol epsilon could substitute for yeast or human Pol delta in the generation of long DNA products. However, human Pol epsilon did increase slightly the length of DNA chains formed by the DNA polymerase alpha-primase complex in SV40 DNA synthesis. The bearing of this observation on the requirement for a PCNA-dependent DNA polymerase in the synthesis and maturation of Okazaki fragments is discussed. However, no unique role for human Pol epsilon in the in vitro SV40 DNA replication system was detected.  相似文献   

16.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

17.
Cell extracts (S100) derived from human 293 cells were separated into five fractions by phosphocellulose chromatography and monitored for their ability to support simian virus 40 (SV40) DNA replication in vitro in the presence of purified SV40 T antigen. Three fractions, designated I, IIA, and IIC, were essential. Fraction IIC contained the known replication factors topoisomerases I and II, but in addition contained a novel replication factor called RF-C. The RF-C activity, assayed in the presence of I, IIA, and excess amounts of purified topoisomerases, was detected in both cytosol and nuclear fractions, but was more abundant in the latter fraction. RF-C was purified from the 293 cell nuclear fraction to near homogeneity by conventional column chromatography. The reconstituted reaction mix containing purified RF-C could replicate SV40 origin-containing plasmid DNA more efficiently than could the S100 extract, and the products were predominantly completely replicated, monomer molecules. Interestingly, in the absence of RF-C, early replicative intermediates accumulated and subsequent elongation was aberrant. Hybridization studies with strand-specific, single-stranded M13-SV40 DNAs showed that in the absence of RF-C, abnormal DNA synthesis occurred preferentially on the lagging strand, and leading-strand replication was inefficient. These products closely resembled those previously observed for SV40 DNA replication in vitro in the absence of proliferating-cell nuclear antigen. These results suggest that an elongation complex containing RF-C and proliferating-cell nuclear antigen is assembled after formation of the first nascent strands at the replication origin. Subsequent synthesis of leading and lagging strands at a eucaryotic DNA replication fork can be distinguished by different requirements for multiple replication components, but we suggest that even though the two polymerases function asymmetrically, they normally progress coordinately.  相似文献   

18.
Initiation of simian virus 40 DNA replication in vitro.   总被引:28,自引:3,他引:25       下载免费PDF全文
Exogenously added simian virus 40 (SV40) DNA can be replicated semiconservatively in vitro by a mixture of a soluble extract of HeLa cell nuclei and the cytoplasm from SV40-infected CosI cells. When cloned DNA was used as a template, the clone containing the SV40 origin of DNA replication was active, but a clone lacking the SV40 origin was inactive. The major products of the in vitro reaction were form I and form II SV40 DNAs and a small amount of form III. DNA synthesis in extracts began at or near the in vivo origin of SV40 DNA synthesis and proceeded bidirectionally. The reaction was inhibited by the addition of anti-large T hamster serum, aphidicolin, or RNase but not by ddNTP. Furthermore, this system was partially reconstituted between HeLa nuclear extract and the semipurified SV40 T antigen instead of the CosI cytoplasm. It is clear from these two systems that the proteins containing SV40 T antigen change the nonspecific repair reaction performed by HeLa nuclear extract alone to the specific semiconservative DNA replication reaction. These results show that these in vitro systems closely resemble SV40 DNA replication in vivo and provide an assay that should be useful for the purification and subsequent characterization of viral and cellular proteins involved in DNA replication.  相似文献   

19.
Autographica californica multiple nuclear polyhedrosis virus (AcMNPV) has been shown to encode many of the enzymes involved in the replication of its own DNA. Although the AcMNPV genome contains multiple sets of reiterated sequences that are thought to function as origins of DNA replication, no initiator protein has yet been identified in the set of viral replication enzymes. In this study, the ability of a heterologous origin initiator system to promote DNA replication in AcMNPV-infected cells was examined. A recombinant AcMNPV that expressed the simian virus 40 (SV40) large T antigen was surprisingly found to induce the efficient replication of a transfected plasmid containing an SV40 origin. This replication was subsequently found to involve three essential components: (i) T antigen, since replication of SV40 origin-containing plasmids was not induced by wild-type AcMNPV which did not express this protein; (ii) an intact SV40 core origin, since deletion of specific functional motifs within the origin resulted in a loss of replicative abilities; and (iii) one or more AcMNPV-encoded proteins, since viral superinfection was required for plasmid amplification. Characterization of the replicated DNA revealed that it existed as a high-molecular-weight concatemer and underwent significant levels of homologous recombination between inverted repeat sequences. These properties were consistent with an AcMNPV-directed mode of DNA synthesis rather than that of SV40 and suggested that T antigen-SV40 origin complexes may be capable of initiating DNA replication reactions that can be completed by AcMNPV-encoded enzymes.  相似文献   

20.
We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号