首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.  相似文献   

2.
The addition of proteinase inhibitors (1 mM phenylmethylsulfonyl fluoride, 10 mM N-ethylmaleimide, 0.25 mM benzamidine hydrochloride, 6.25 mM EDTA, 12.5 mM 6-aminohexanoic acid and 2 mM iodoacetic acid) to explant cultures of adult bovine articular cartilage inhibits proteoglycan synthesis as well as the loss of the macromolecule from the tissue. Those proteoglycans lost to the medium of explant cultures treated with proteinase inhibitors were either aggregates or monomers with functional hyaluronic acid-binding regions, whereas proteoglycans lost from metabolically active tissue also included a population of monomers that were unable to aggregate with hyaluronate. Analysis of the core protein from proteoglycans lost into the medium of inhibitor-treated cultures showed the same size distribution as the core proteins of proteoglycans present in the extracellular matrix of metabolically active cultures. The core proteins of proteoglycans appearing in the medium of metabolically active cultures showed that proteolytic cleavage of these macromolecules occurred as a result of their loss from the tissue. Explant cultures of articular cartilage maintained in medium with proteinase inhibitors were used to investigate the passive loss of proteoglycan from the tissue. The rate of passive loss of proteoglycan from the tissue was dependent on surface area, but no difference in the proportion of proteoglycan aggregate to monomer appearing in the medium was observed. Furthermore, proteoglycans were lost at the same rate from the articular and cut surfaces of cartilage. Proteoglycan aggregates and monomer were lost from articular cartilage over a period of time, which indicates that proteoglycans are free to move through the extracellular matrix of cartilage. The movement of proteoglycans out of the tissue was shown to be temperature dependent, but was different from the change of the viscosity of water with temperature, which indicates that the loss of proteoglycan was not solely due to diffusion. The activation energy for the loss of proteoglycans from articular cartilage was found to be similar to the binding energies for electrostatic and hydrogen bonds.  相似文献   

3.
Two forms of dermatan sulfate proteoglycans, called DS-PGI and DS-PGII, have been isolated from both bovine fetal skin and calf articular cartilage and characterized. The proteoglycans were isolated using either (a) molecular sieve chromatography under conditions where DS-PGI selectively self-associates or (b) chromatography on octyl-Sepharose, which separates DS-PGI from DS-PGII based on differences in the hydrophobic properties of their core proteins. The NH2-terminal amino acid sequence of DS-PGI from skin and cartilage is identical. The NH2-terminal amino acid sequence of DS-PGII from skin and cartilage is identical. However, the amino acid sequence data and tryptic peptide maps demonstrate that the core proteins of DS-PGI and DS-PGII differ in primary structure. In DS-PGI from bovine fetal skin, 81-84% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4) disaccharide repeating units. In DS-PGI from calf articular cartilage, only 25-29% of the glycosaminoglycan was composed of IdoA-GalNAc(SO4). In DS-PGII from bovine fetal skin, 85-93% of the glycosaminoglycan was IdoA-GalNAc(SO4), whereas in DS-PGII from calf articular cartilage, only 40-44% of the glycosaminoglycan was IdoA-GalNAc(SO4). Thus, analogous proteoglycans from two different tissues, such as DS-PGI from skin and cartilage, possess a core protein with the same primary structure, yet contain glycosaminoglycan chains which differ greatly in iduronic acid content. These differences in the composition of the glycosaminoglycan chains must be determined by tissue-specific mechanisms which regulate the degree of epimerization of GlcA-GalNAc(SO4) into IdoA-GalNAc(SO4) and not by the primary structure of the core protein.  相似文献   

4.
Two acidic glycoproteins of molecular mass 92 kDa and 56 kDa were purified from 4 M guanidine hydrochloride extracts of chick sternal cartilage, by density gradient centrifugation, ion-exchange chromatography, gel chromatography and SDS/PAGE. The glycoproteins differed in their amino acid and carbohydrate compositions. They were identified by the immunoblotting technique in extracts of chick articular cartilage from various sites and in extracts of cartilage from other species. The proteins are synthesized by the chondrocytes and show a partial cross-reactivity between their antisera.  相似文献   

5.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

6.
1. Proteoglycans were extracted from bovine nasal cartilage with 2.0M-CaC2 or with 0.15M-KCl followed by 2.0M-CaC2.. Proteoglycan fractions were prepared from the extracts by density-gradient centrifugation in CsCl under 'associative' and 'dissociative' conditions. 2. The heterogeneity of the proteoglycan fractions was investigated by large-pore-gel electrophoresis. It was concluded that extracts made with 2.0M-CaCl2 or sequential 2.0M-CaCl2 contain two major species of proteoglycan 'subunit' of different hydrodynamic size, together with proteoglycan aggregates. Both 'subunits' have mobilities that are greater than those of proteoglycans obtained from pig articular cartilage McDevitt & Muir (1971) Anal. Biochem. 44, 612-622] and are therefore probably smaller in size than the latter. 3. Proteoglycan fractions isolated from cartilage extracted lith 0.15M-KCl separated into two main components on large-pore-gel electrophoresis with mobilities greater than those of proteoglycans extracted with 2.0M-CaCl2. Proteoglycans extracted at low ionic strength from bovine nasal cartilage are of similar hydrodynamic size to those extracted from pig articular cartilage under the same conditions [McDevitt & Muir (1971) Anal. Biochem. 44, 612-622]. 4. The role of endogenous proteolytic enzymes in producing proteoglycan heterogeneity, particularly in low-ionic-strength cartilage extracts is discussed. 5. Hyaluronic acid and 'link proteins' were present in the proteoglycan fraction separated from KCl extracts as well as in the fraction separated from CaCl2 extracts. Hyaluronic acid can only be identified in proteoglycan fractions by large-pore-gel electrophoresis after proteolysis and further purification of the fraction. 6. Collagen was extracted by both salt solutions and was tentatively identified as type II. Small amounts of collagen appear to be associated with the proteoglycan-aggregate fraction from the high-ionic-strength extract but not with the corresponding fraction from the KCl extract.  相似文献   

7.
Proteoglycans were extracted, in a yield of about 90%, from costal cartilage of young, growing guinea-pigs. Three solvents were used in sequence: 0.4 M guanidine - HCl, pH 5.8, 4 M guanidine - HCl, pH 5.8, and 4 M guanidine - HCl/0.1 M EDTA, pH 5.8. The proteoglycans were purified and fractionated by cesium chloride density gradient ultracentrifugation under associative and dissociative conditions. Gel chromatography on Sepharose 2 B of proteoglycan fractions from associative centrifugations showed the presence of both aggregated and monomer proteoglycans. The ratio of aggregates to monomers was higher in the second extract than in the other two extracts. Dissociative gradient centrifugation gave a similar distribution for proteoglycans from all three extracts. Thus, with decreasing buoyant density there were decreasing ratios of polysaccharide to protein, and of chondroitin sulfate to keratan sulfate. In addition, there was with decreasing density an increasing ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. Amino acid analyses of dissociative fractions were inaccordance with previously published results. On comparing proteoglycan monomers of the three extracts, significant differences were found. Proteoglycans, extracted at low ionic strength, contained lower proportions of protein, keratan sulfate, chondroitin 6-sulfate and basic amino acids than those of the second extract. The proteoglycans of the third extract also differed from those of the other extracts. The results indicate that the proteoglycans of guinea-pig costal cartilage exist as a very polydisperse and heterogenous population of molecules, exhibiting variations in aggregation capacity, molecular size, composition of protein core, degree of substitution of the protein core, as well as variability in the type of polysaccharides substituted.  相似文献   

8.
9.
The monoclonal L5 antibody reacts with an N-glycosidically linked carbohydrate structure which is present on the neural cell adhesion molecule L1, neural chondroitin sulfate proteoglycans, and other not yet identified glycosylated proteins. Using this antibody, we isolated and characterized proteoglycans from adult mouse brain and cultured astrocytes biosynthetically labeled with Na2 35SO4 and a 3H-amino acid mixture. Our data suggest that the L5 proteoglycans of both sources are identical in their biochemical properties. The apparent molecular mass of the L5 proteoglycan is approximately 500 kDa. Digestion of the iodinated L5 proteoglycan from mouse brain and of the [35S]methionine-labeled L5 proteoglycan from cultured astrocytes with proteinase-free chondroitinases ABC and AC revealed three major core proteins with apparent molecular masses of approximately 380, 360, and 260 kDa. These represent molecularly distinct protein cores.  相似文献   

10.
Dermatan sulfate proteoglycans were isolated from adult bovine sclera and adult bovine articular cartilage. Their immunological relationships were studied by enzyme-linked immunosorbent assays using polyclonal antibodies raised against the large and small dermatan sulfate proteoglycans from sclera and a polyclonal and monoclonal antibody directed against the small dermatan sulfate proteoglycans from cartilage. The small dermatan sulfate proteoglycans from sclera and cartilage displayed immunological cross-reactivity while there was no convincing evidence of shared epitope(s) with the larger dermatan sulfate proteoglycans, nor did these larger proteoglycans share any common epitopes with each other. A hyaluronic acid binding region was detected immunologically on the larger scleral dermatan sulfate proteoglycan but was absent from the larger dermatan sulfate proteoglycan of cartilage and both the small dermatan sulfate proteoglycans. These antibodies were used in immunofluorescence microscopy to localize the scleral proteoglycans and molecules containing these epitopes in the eye. The large scleral dermatan sulfate proteoglycan was restricted to sclera while molecules related to the small scleral and cartilage proteoglycans were found in the sclera, anterior uveal tract, iris, and cornea. Amino acid sequencing of the amino-terminal regions of the core proteins of the small dermatan sulfate proteoglycans from sclera and articular cartilage showed that all the first 14 amino acids analyzed were identical and the same as reported earlier for the small bovine skin and tendon dermatan sulfate proteoglycans. These studies demonstrate that the larger dermatan sulfate proteoglycans of sclera and cartilage are chemically unrelated to each other and to the smaller dermatan sulfate proteoglycans isolated from these tissues. The latter have closely related core proteins and probably represent a molecule with a widespread distribution in which the degree of epimerization of glucuronic acid and iduronic acid varies between tissues.  相似文献   

11.
The menisci are collagen-rich, fibrocartilagenous structures which are important in protecting the articular cartilage of the knee from some of the impact of weight-bearing. Meniscal proteoglycans have been studied in several mammalian species, including the dog, but very little is known about the noncollagenous proteins of the menisci. In the present study, 4 M guanidinium chloride extracts of meniscal cartilage from normal adult mongrel dogs were studied, and several noncollagenous proteins, including the link proteins and a 116,000-Da subunit protein, which we have recently described in articular cartilage, were found in meniscal cartilage. The 116,000-Da subunit protein represents 3.8% of the total protein extracted from meniscal cartilage. The link proteins sedimented in the bottom of an associative cesium chloride density gradient, where high-buoyant-density proteoglycans sediment.  相似文献   

12.
A high-molecular-weight (greater than 400 000) non-collagenous protein has been identified in normal articular cartilage from several mammalian species and in bovine tracheal cartilage. This protein is reduced by 2-mercaptoethanol to subunits with a molecular weight of 116 000, which appear to constitute approx. 2-4% of the total protein detectable by the Lowry assay in 4 M guanidinium chloride extracts of normal bovine and canine articular cartilage. Antiserum to the 116 kDa subunit protein from bovine articular cartilage cross-reacts with the intact and subunit proteins from bovine trachea and from normal canine, porcine and human articular cartilage. This protein is not found in non-cartilagenous tissues, suggesting that it is a cartilage-specific protein. We conclude that the greater than 400 kDa protein and its subunit are ubiquitous and quantitatively significant proteins in hyaline cartilage.  相似文献   

13.
Newly synthesized proteoglycans of rat incisors were labelled in vivo for 6h with [35S]-sulphate in order to facilitate their detection during purification and characterization. Proteoglycans were extracted from non-mineralized portions (predentine) of rat incisors with 4M-guanidinium chloride and subsequently from dentine by demineralization with a 0.4M-EDTA solution containing 4M-guanidinium chloride. Both extractions were performed at 4 degrees C in the presence of proteinase inhibitors. Purification of proteoglycans was achieved with a procedure involving gel-filtration chromatography, selective precipitation of phosphoproteins, affinity chromatography and ion-exchange chromatography. Two proteoglycan populations were found in the initial extract (Pd-PG I and Pd-PG II), whereas only one fraction (D-PG) was obtained after demineralization. The minor proteoglycan fraction from the first extract, Pd-PG I, although not totally characterized, differed sharply from the other proteoglycans in that it had a larger molecular size with larger glycosaminoglycan chains composed of chondroitin 4- and 6-sulphate isomers. In contrast, the major proteoglycans Pd-PG II and D-PG had smaller hydrodynamic sizes with smaller glycosaminoglycan chains (but larger than those from bovine nasal cartilage proteoglycans) composed exclusively of chondroitin 4-sulphate. The major proteoglycans were incapable of interacting with hyaluronic acid. In general, the amino acid compositions of the major proteoglycans of rat incisors resembled that of bovine nasal cartilage proteoglycans, but the former had lower proline, valine, isoleucine, leucine, and higher aspartic acid, contents.  相似文献   

14.
Low molecular mass proteoglycans (PG) were isolated from human articular cartilage and from pig laryngeal cartilage, which contained protein cores of similar size (Mr 40-44 kDa). However, the PG from human articular cartilage contained dermatan sulphate (DS) chains (50% chondroitinase AC resistant), whereas chains from pig laryngeal PG were longer and contained only chondroitin sulphate (CS). Disaccharide analysis after chondroitinase ABC digestion showed that the human DS-PG contained more 6-sulphated residues (34%) than the pig CS-PG (6%) and both contained fewer 6-sulphated residues than the corresponding high Mr aggregating CS-PGs from these tissues (86% and 20% from human and pig respectively). Cross-reaction of both proteoglycans with antibodies to bovine bone and skin DS-PG-II and human fibroblasts DS-PG suggested that the isolated proteoglycans were the humans DS-PG-II and pigs CS-PG-II homologues of the cloned and sequenced bovine proteoglycan. Polyclonal antibodies raised against the pig CS-PG-II were shown to cross-react with human DS-PG-II. SDS/polyacrylamide-gel analysis and immunoblotting of pig and human cartilage extracts showed that some free core protein was present in the tissues in addition to the intact proteoglycan. The antibodies were used in a competitive radioimmunoassay to determine the content of this low Mr proteoglycan in human cartilage extracts. Analysis of samples from 5-80 year-old humans showed highest content (approximately 4 mg/g wet wt.) in those from 15-25 year-olds and lower content (approximately 1 mg/g wet wt.) in older tissue (greater than 55 years). These changes in content may be related to the deposition and maintenance of the collagen fibre network with which this class of small proteoglycan has been shown to interact.  相似文献   

15.
Costal cartilage from experimentally diabetic rats, labeled in vivo or in vitro with [35S]sulfate, was shown to incorporate less label into proteoglycans than cartilage from nondiabetic rats. Analyses of guanidine HCl cartilage extracts by gel chromatography on Sepharose CL-2B showed two major peaks at Kav approximately 0.4 and 0.8 (peaks I and II, respectively). Cartilage extracts from the diabetic rats contained predominantly peak II proteoglycans, while 60 and 55%, respectively, of the total 35S-labeled proteoglycans extracted from control cartilage labeled in vivo and in vitro with [35S]sulfate were present in peak I. After insulin treatment of the diabetic rats, the relative amount of peak I 35S-labeled proteoglycans synthesized in vivo was increased to 70%. The overall in vivo incorporation of [35S]sulfate into proteoglycans was also stimulated in diabetic rats treated with insulin to levels above those found for control rats. Thus, diabetes-induced changes in the biosynthesis of rat costal cartilage proteoglycans may be alleviated by normalization of the diabetic state by insulin treatment. However, addition of insulin (10(-5)-10(-9) M) to the culture medium did not affect the amount of 35S-labeled proteoglycans synthesized in vitro or the relative amounts of peak I proteoglycans produced by control or diabetic cartilage, suggesting that insulin does not have a direct effect on proteoglycan production. Moreover, no decrease in the amount of 35S-labeled proteoglycans produced was found when glucose at high concentrations was present in the culture medium. However, the presence of rat serum resulted in an increase in the amount of 35S-labeled proteoglycans produced by both control and diabetic cartilage, demonstrating that the cartilage explants were metabolically responsive to stimulatory factors.  相似文献   

16.
The effect of altered mechanical stress on the metabolism of sheep articular cartilage has been investigated. A simple experimental model involving the immobilisation of a single sheep foreleg was used to study the effect of increased or decreased functional demand on the chemical composition of, and the incorporation of labelled acetate into, the proteoglycans of sheep articular cartilage. By immobilisation of one of the sheep forelegs, mechanical stress is removed from that particular joint, while increased stress is placed on the other foreleg. The load distribution about the two hind legs remains essentially the same. After a 4-week immobilisation period there was a significant increase in the hexuronic acid content of the cartilage from the loadbearing ankle joint, and a corresponding decrease in the hexuronic acid content of the non-loadbearing joint cartilage. Hexosamine analyses of the cartilage from each joint showed that the major chemical occurred in the chondroitin sulphate fraction. From analyses of the extracted and isolated proteoglycans from each experimental joint it was evident that there was a significant decrease in the molecular weight of the proteoglycan from the non-loadbearing joint. In vitro studies showed increased incorporation of labelled acetate into the chondroitin sulphate fraction from the loadbearing joint but a corresponding decreased incorporation into the non-loadbearing immobilised joint cartilage. These results suggest that the changes observed in the chemical composition of the cartilage from the loadbearing and non-loadbearing joints may be accounted for in part by changes in the biosynthesis of the cartilage proteoglycan in response to altered functional demand.  相似文献   

17.
Rabbit ear cartilage was incubated with [14C]glucose and proteoglycans were extracted from the crushed cartilage by differential extraction. The extraction was performed sequentially with 0.15, 0.45 and 1.0 M NaCl, followed by 0.1 M acetic acid. The tissue residue was digested with collagenase and finally with papain. Each extractant, with the exception of 0.1 M acetic acid, released uronic acid containing material into the solution. The extractable proteoglycans represented together about 20% of the whole tissue uronate, the proteoglycans released by collagenase treatment accounted for a further 30%. The rest was insoluble and was released by papain. The highest specific radioactivity was found in the 0.15 M NaCl extract, decreasing progressively in subsequent extracts. The lowest specific activity was found in the chondroitin sulfate released from the tissue residue by papain. Radioactivity in the collagen-associated proteoglycans was comparable to the radioactivity of 1.0 M NaCl extracts. All salt extractable proteoglycans were retarded by Sepharose 6B and were found to be heterogeneous in size and rate of precursor uptake. Chondroitin sulfate released from each proteoglycan fraction was also heterogeneous in size and metabolic activity.  相似文献   

18.
Rabbit ear cartilage was incubated with [14C]glucose and proteoglycans were extracted from the crushed cartilage by differential extraction. The extraction was performed sequentially with 0.15, 0.45 and 1.0 M NaCl, followed by 0.1 M acetic acid. The tissue residue was digested with collagenase and finally with papain. Each extractant, with the exception of 0.1 M acetic acid, released uronic acid containing material into the solution. The extractable proteoglycans represented together about 20% of the whole tissue uronate, the proteoglycans released by collagenase treatment accounted for a further 30%. The rest was insoluble and was released by papain. The highest specific radioactivity was found in the 0.15 M NaCl extract, decreasing progressively in subsequent extracts. The lowest specific activity was found in the chondroitin sulfate released from the tissue residue by papain. Radioactivity in the collagen-associated proteoglycans was comparable to the radioactivity of 1.0 M NaCl extracts. All salt extractable proteoglycans were retarded by Sepharose 6B and were found to be heterogeneous in size and rate of precursor uptake. Chondroitin sulfate released from each proteoglycan fraction was also heterogeneous in size and metabolic activity.  相似文献   

19.
The relationship between cartilage thickness and proteoglycan extractability was examined. Bovine nasal cartilage slices (20, 100, and 500 micron thicknesses) were extracted with low-ionic-strength buffer and 4 M guanidine hydrochloride. The extractability of proteoglycans with both solutions depended on slice thickness. Thinner slices yielded greater amounts of proteoglycans. Sixty-three percent of the total cartilage uronic acid was extracted from 20-micron cartilage slices with low-ionic-strength buffer while only 7% was extracted for 500-micron slices. Each fivefold increase in cartilage surface area led to a threefold increase in uronic acid extraction with low-ionic-strength buffer. Extraction of proteoglycan aggregates was directly proportional to the cartilage surface area whereas extraction of non-aggregated proteoglycans, per surface area, increased with increasing cartilage thickness. These data are consistent with the hypothesis that proteoglycan aggregates are extracted mainly from the cartilage surface while non-aggregated proteoglycans diffuse from deep within the cartilage. Extraction with low-ionic-strength buffer occurred in two phases. There was an initial rapid loss of proteoglycans in which 1/3 to 1/2 of all proteoglycans eluting over 6 days were extracted during the first 30 min. Subsequent extraction was much slower with decreasing amounts extracted on each consecutive day. The initial rapid loss of proteoglycans was probably due to the steep osmotic-pressure gradient existing when the cartilage was placed in the low-ionic-strength buffer.  相似文献   

20.
35SO42- - and [3H]-leucine-labelled proteoglycans were isolated from the medium of a fibroblast culture, from an EDTA extract of the monolayer, and from consecutive dithiothreitol and guanidine hydrochloride extracts of the cells. Proteoglycans of different sizes were isolated from the extracts by gel chromatography on Sepharose 4B. In the medium and the EDTA extract the largest proteoglycans contained only 35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparan [35S-labelled galactosaminoglycan, whereas all other fractions contained in addition heparin [35S]sulphate. The galactosaminoglycan-containing proteoglycans of the various extracts were separated into a larger component, containing chondroitin sulphate-like side chains, and a smaller component, containing dermatan sulphate. The larger proteoglycan of the medium showed reversible association-dissociation behaviour when chromatographed on Sepharose CL2B in phosphate-buffered saline and 4M-guanidine hydrochloride respectively. This property remained after removal of extraneous proteins by CsCl-density-gradient centrifugation in guanidine hydrochloride. The association was markedly increased by the addition of high-molecular-weight hyaluronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号