首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Summary Cells in the visual cortex (area 17) of adult rats were impregnated by the rapid Golgi method and characterized by light microscopy. Selected cells were then sectioned for electron microscopy and their cytological characteristics and the pattern of synapses on their cell bodies and dendrites were studied Twelve classical pyramidal cells from layers II–VI, two pyramid-like cells from layer VI, two inverted pyramidal cells from layers V and VI, ten spine-free non-pyramidal cells from layers II–VI and two spinous non-pyramidal cells from layer IV were examined.The cytoplasmic features of the identified cells, where these could be discerned, corresponded to those previously reported for the different cell types in conventionally prepared tissue. Pyramidal Cells received exclusively type 2 synaptic contacts on their cell bodies, type 1 contacts on their dendritic spines and a mixture of synaptic types (type II predominating) on their shafts, where synaptic density was relatively low. This pattern of synaptic contacts was consistent for all portions of the dendritic tree; inverted pyramidal cells and pyramid-like cells showed the same synaptic organization as classical pyramids. The axon collaterals of pyramidal cells established type I contacts with dendritic spines (or, rarely, shafts) of unknown origin. Non-Pyramidal Cells received both type 1 and type 2 contacts (the former predominating) on their cell bodies and dendrites. The spinous variety also received type I contacts on their dendritic spines. Axon terminal of spine-free non-pyramidal cells established type II synaptic contacts with dendritic shafts of unknown origin. The similarity in synaptic organization between the spine-free and spinous non-pyramidal cells examined in this study suggest that the latter correspond to the sparsely spinous stellate cells rather than to the spinous stellate cells of cat and monkey visual cortex.We thank the Medical Research Council for financial support  相似文献   

2.
Summary Scanning electron microscopy and cryofracture technique were applied to study neuronal architecture and synaptic connections of the human cerebellum. Samples were processed according to the technique of Humphreys et al. (1975) with minor modifications. The granule cells exhibit unbranched filiform axons and coniform dendritic processes. The latter show typical claw-like endings making gearing type synaptic contacts with mossy fiber rosettes. The unattached mossy rosettes appear as solid club-like structures. Some fractographs show individual granule cells, Golgi neurons and glomerular islands. The climbing fibers and their Scheibel's collaterals were also characterized. In the Purkinje layer the surface fracture was produced at the level of the Bergmann glial cells, which are selectively removed, allowing us to visualize the rough surface of Purkinje cells and the supra- and infraganglionic plexuses of basket cell axons which appeared as entangled threads. In the molecular layer the three-dimensional configuration of the Purkinje secondary and tertiary dendritic branches was obtained. The filiform parallel fibers make cruciform synaptic contacts with the Purkinje dendritic spines. The appearance of stellate neuronal somata closely resembled that of the granule cells. The subpial terminals of Bergmann fibers appeared attached to the exterior of the folia forming the rough surfaced external glial limiting membrane.  相似文献   

3.
The dentate fascia of the hippocampal formation isolated from 20-day-old Wistar rat fetuses was subjected to heterotopic transplantation into the somatosensory area of the neocortex of adult rats of the same strain. Five months after surgery, neurotransplantates, together with neighboring area of the neocortex, were studied using light and electron microscopy. We carried out a detailed study of the ultrastructure of the ectopic synaptic endings formed by the axons of granular neurons of the dentate fascia (mossy fibers) with neurons of the neocortex unusual for them in a normal state. Ultrastructural analysis revealed that most ectopic synaptic endings produce its determinant morphological features: giant sizes of presynaptic knobs, active zones with branched dendritic spines, and adherens junctions with the surface of dendrites. The data indicate that the mossy fibers growing from neurotransplantates induce structural and chemical reorganization of dendrites of the neocortex using transmembrane adherens junctions, such as puncta adherentia junctions. This results in the differentiation of active zones and development of dendritic spines typical for giant synaptic endings that are invaginated into presynaptic endings. Thus, the ability of neurons of the dentate fascia to form aberrant synaptic connections at transplantation results from the inductive synaptogenic properties of mossy fibers.  相似文献   

4.
The development of cerebellar cortex is strongly impaired by thyroid hormone (T3) deficiency, leading to altered migration, differentiation, synaptogenesis, and survival of neurons. To determine whether alteration in the expression of neurotrophins and/or their receptors may contribute to these impairments, we first analyzed their expression using a sensitive RNAse protection assay and in situ hybridization; second, we administered the deficient neurotrophins to hypothyroid animals. We found that early hypothyroidism disrupted the developmental pattern of expression of the four neurotrophins, leading to relatively higher levels of NGF and neurotrophin 4/5 mRNAs and to a severe deficit in NT-3 and brain-derived neurotrophic factor (BDNF) mRNA expression, without alteration in the levels of the full-length tyrosine kinase (trk) B and trkC receptor mRNAs. Grafting of P3 hypothyroid rats with cell lines expressing high levels of neurotrophin 3 (NT-3) or BDNF prevented hypothyroidism-induced cell death in neurons of the internal granule cell layer at P15. In addition, we found that NT-3, but not BDNF, induced the differentiation and/or migration of neurons in the external granule cell layer, stimulated the elaboration of the dendritic tree by Purkinje cells, and promoted the formation of the mature pattern of synaptic afferents to Purkinje cell somas. Thus, our results indicate that both granule and Purkinje neurons require appropriate levels of NT-3 for normal development in vivo and suggest that T3 may regulate the levels of neurotrophins to promote the development of cerebellum.  相似文献   

5.
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.  相似文献   

6.
Fetal cerebellar anlage from rat fetuses of 15-16 operational days were grafted into the anterior chamber of the eye of adult female albino rat recipients. Survival time of the transplants--containing both cerebellar cortex and cerebellar nuclei--was 2 to 2 1/2 months. Electron microscopical (EM) studies of the thin, under-developed granular layer of the laminated cerebellar cortex revealed the presence of well differentiated cerebellar glomeruli, surrounded by granule cell perikarya. As in the normal cerebellar cortex, the central profile of the glomerular complex was the large mossy terminal, containing spheroid synaptic vesicles, and forming synaptic contacts with dendrites and dendritic digits of the granule cells. Golgi cell axonal varicosities, containing ovoid or pleomorphic synaptic vesicles were found also on the periphery of the glomeruli. In addition, in several synaptic glomeruli, a third neuronal element was also observed, containing flat, discoidal vesicles and receiving synaptic contacts from mossy and Golgi axons, but being also presynaptic to granule cell dendrites. It is suggested that all mossy terminals in the cerebellar transplant originate from the cerebellar nucleus. Morphological evidence is also provided that the presynaptic dendrite-like processes--never found in normal cerebellar cortex--are also processes of nuclear neurons.  相似文献   

7.
Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell–specific knockdown of cyclin-dependent kinase 5 (cdk5) activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.  相似文献   

8.
9.
Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.  相似文献   

10.
Granule cells are major targets of entorhinal afferents terminating in a laminar fashion in the outer molecular layer of the dentate gyrus. Since Borna disease virus (BDV) infection of newborn rats causes a progressive loss of granule cells in the dentate gyrus, entorhinal fibres become disjoined from their main targets. We have investigated the extent to which entorhinal axons react to this loss of granule cells. Unexpectedly, anterograde DiI tracing has shown a prominent layered termination of the entorhinal projection, despite an almost complete loss of granule cells at 9 weeks after infection. Combined light- and electron-microscopic analysis of dendrites at the outer molecular layer of the dentate gyrus at 6 and 9 weeks post-infection has revealed a transient increase in the synaptic density of calbindin-positive granule cells and parvalbuminergic neurons after 6 weeks. In contrast, synaptic density reaches values similar to those of uninfected controls 9 weeks post-infection. These findings indicate that, after BDV infection, synaptic reorganization processes occur at peripheral dendrites of the remaining granule cells and parvalbuminergic neurons, including the unexpected persistence of entorhinal axons in the absence of their main targets.  相似文献   

11.
The present report describes the genesis, development and topographical distribution of ectopic cells of the external granular layer in the subarachnoid space covering the rat cerebellum. Following one intracisternal injection to newborn rats of 100 micrograms 6-hydroxydopamine (6-OHDA), the meningeal cells degenerate and are removed by phagocytosis within 24 h post injection (p.i.), leaving the cerebellar cortex without a pia-arachnoid cover. Defects appear in the basal lamina investing the cerebellar cortex 3 to 5 days p.i., and both external granule cells and 'sprouts' from Bergmann-glia endfeet grow into the subarachnoid space. The latter form large, flat glial lamellae and cover extensive areas of the denuded cerebellar surface, although they do not form a glial scar over the exposed neuropil of the cerebellar cortex. The numbers of ectopic external granule cells increase within the subarachnoid space both by proliferation and a continuous efflux of cells from the cerebellar cortex. They migrate, aggregate, and ultimately develop into granule, stellate and basket cells, the morphology of which is indistinguishable from their counterparts in situ; they make specific afferent and efferent connections, both among themselves and with the underlying cerebellar cortex and brainstem. The distribution of ectopic external granule cells and their derivatives is restricted to the anterior vermal fissures and the vermal-hemispheric junctions. The present results indicate that external granule cells and their derivatives are capable of both differentiating normally and surviving in the subarachnoid space if they become associated with glial cells and establish synaptic connections.  相似文献   

12.
In order to understand the synaptic remodeling in the course of axonal regeneration, the synaptic remodeling of the perforant path in hippocampus was investigated in the present study with entorhino-hippocampal coculture, DiI DiOlistic assay and transmission electron microscopy. The results showed that the regeneration of the perforant pathway occurred in entorhino-hippocampal slice coculture, and putative synaptic contacts formed between the regenerated fibers and dendritic spines of granule cells. Ultrastructural analysis confirmed the formation of new synaptic contacts. In conclusion, the synaptic formation implicated in the neuroregeneration could integrate into the network in CNS.  相似文献   

13.
The fetal dentate fascia of Wistar rats on the 20th day of gestation was heterotopically grafted into the somatosensory neocortex of adult rats. Granule cells of a graft projected their axons (mossy fibers) to the host brain and established synaptic contacts with inappropriate targets. The organization of ectopic mossy fiber synapses was studied by electron microscopy. It was shown that ectopic synapses reproduce the structural determinants of hippocampal giant synapses and induce a subcellular reorganization of postsynaptic neocortex dendrites. Using morphometric analysis, a significant increase was found in the number of discrete puncta adherentia junctions and their total length in ectopic synapses as compared with the control group. The data obtained indicate that puncta adherentia contacts participate in the structural and chemical adaptation of neuronal targets to alien axons growing from transplants.  相似文献   

14.
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7–10 and 11–14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.  相似文献   

15.
A thorough evaluation of hippocampal dendrites, axons and synaptic contacts has not been undertaken following prolonged periods of absence of corticosteroids despite the marked granule cell loss which occurs in the dentate gyrus of adrenalectomized rats. Thus, we have applied morphometric techniques to analyse the dendrites of granule and pyramidal cells, the mossy fiber system, and the number and morphology of synapses between the mossy fibers and the excrescences of CA3 pyramidal cells in rats submitted to different periods of adrenalectomy. In addition, to search for the presence of neuritic reorganisation in the hippocampal formation once normal corticosteroid levels were re-established, we incorporated in this study a group of rats replaced with corticosterone one month after adrenalectomy. The results obtained in adrenalectomized rats showed a striking impoverishment of the dendrites of surviving granule cells, subtle alterations in the apical dendritic arborization of CA3 pyramidal cells and no changes in the apical dendrites of CA1 pyramidal cells. In addition, in adrenalectomized rats there was a progressive reduction in the total number of synapses established between mossy fibers and CA3 pyramids, as a consequence of a reduction in the volume of the suprapyramidal part of the mossy fiber system, and profound changes in the morphology of mossy fiber terminals and CA3 dendritic excrescences. A remarkable reorganisation of neurites was found to occur following the administration of low doses of corticosterone, completely reversing the adrenalectomy-induced synaptic loss and partially restoring the morphology of hippocampal axons and dendrites. These plastic mechanisms provide a sound structural basis for the reversibility of cognitive deficits observed after corticosterone administration to adrenalectomized rats.  相似文献   

16.
Chen  Suzanne  Hillman  Dean E. 《Brain Cell Biology》1999,28(3):187-196
Qualitative and quantitative changes were found in the cerebellar circuitry of old as compared to young rats. The old group had a reduced number of synapses (at least 30%), however, there was an increase in the size of remaining synaptic components (13.5% for spine head volume, 66% for bouton volume, and 17% for the area of synaptic contact zones). Furthermore, there were pronounced morphological changes in the older group appearing as: 1) prominent lipofuscin bodies in Purkinje cell somata, 2) numerous myelinated fibers in the lower part of the molecular layer, 3) tortuous Purkinje cell dendrites in a thinned molecular layer, and 4) abundant vacuolar profiles and membrane swirls in small and intermediate-sized dendrites. Our findings suggest that Purkinje cell dendrites are dying-back reducing the target field for granule cells and that remaining synaptic sites compensate by increasing synaptic contact area as well as the size of pre- and postsynaptic structures.  相似文献   

17.
With the aid of a sheep antiserum against rat brain glutamate decarboxylase (GAD), the endogenous marker for GABAergic neurons, we have labeled immunocytochemically various types of nerve cells in the main olfactory bulb of rats, with and without topic injections of colchicine. The peroxidase-antiperoxidase procedure was applied to floating Vibratome and frozen sections. A large part of the periglomerular cell population and practically all granule cells in the deep layers contain GAD-like immunoreactivity in untreated rats, while tufted and mitral cells (the projection neurons) are unstained. This observation confirms a previous study with a rabbit antiserum against mouse brain GAD, which suggested that GABAergic neurons with presynaptic dendrites contain high somatal concentrations of GAD. We show, however, that immunostaining of granule cell bodies decreases progressively from the internal plexiform layer to the deep portion of the granule cell layer. Many cell processes in the glomeruli are densely stained. They presumably represent synaptic gemmules of the numerous GAD-positive periglomerular cells, which thus could provide initial, inhibitory modulation of the afferent input. In the external plexiform layer immunostaining of the neuropil is substantially denser in the superficial half than in the deep half. This may reflect a corresponding gradient of inhibition related to unequal frequency of occurrence of synaptic gemmules of granule cell dendrites. Alternatively such a graded immunostaining of cell processes could be related to the corresponding gradient in the density of immunostaining of granule cell bodies in the deep layers, in accordance with recent data indicating that superficial and deep granule cells project their ascending dendrites respectively to superficial and deep portions of the external plexiform layer. Furthermore, we have demonstrated the presence of additional classes of GAD-positive neurons, microneurons in the external plexiform layer, small neurons in the periglomerular region, the external plexiform layer, the mitral cell layer, the internal plexiform layer, and medium-size neurons in the granule layer and the white matter. The small- and medium-size GAD-positive neurons appear weakly immunoreactive in untreated rats, but become densely stained after topic colchicine injection. Such cells presumably lack presynaptic dendrites and may correspond to different types of short axon cells demonstrated by the Golgi method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Previous work has established that dendritic spines, sites of excitatory input in CNS neurons, can be highly dynamic, in later development as well as in mature brain. Although spine motility has been proposed to facilitate the formation of new synaptic contacts, we have reported that spines continue to be dynamic even if they bear synaptic contacts. An outstanding question related to this finding is whether the presynaptic terminals that contact dendritic spines are as dynamic as their postsynaptic targets. Using multiphoton time-lapse microscopy of GFP-labeled Purkinje cells and DiI-labeled granule cell parallel fiber afferents in cerebellar slices, we monitored the dynamic behavior of both presynaptic terminals and postsynaptic dendritic spines in the same preparation. We report that while spines are dynamic, the presynaptic terminals they contact are quite stable. We confirmed the relatively low levels of presynaptic terminal motility by imaging parallel fibers in vivo. Finally, spine motility can occur when a functional presynaptic terminal is apposed to it. These analyses further call into question the function of spine motility, and to what extent the synapse breaks or maintains its contact during the movement of the spine.  相似文献   

19.
The ultrastructure of cerebellar axosomatic (inhibitory) and axo-dendritic (excitatory) synapses were studied on the Purkinje cells and in the lower molecular layer of guinea-pigs and rats, respectively. It was shown that synaptic contacts of excitatory and inhibitory synapses differed in the existence of desmosome-like structures near the active zones. The classification of synaptic functions according to the ultrastructure of specialized contacts, earlier developed to identify neurons of lower vertebrates, is supposed to be applicable to the nervous system of higher vertebrates.  相似文献   

20.
Synapses were counted in electron micrographs of the middle third of the molecular layer of the dentate gyrus of Fischer 344 rats, 3 months and 25 months of age. A 27% decrease in the number of synapses was found in senescent animals compared with young adults. This loss of synapses could not be correlated with changes in synaptic size. tissue volume or number of postsynaptic granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号