首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal rat kidney (NRK) cells growth arrested by picolinic acid and isoleucine deprivation exhibit an increased response to certain agents (i.e., prostaglandin E1, (?)-isoproterenol, and cholera toxin) which elevate intracellular cyclic AMP levels. The enhanced hormonal response is apparently due, at least in part, to increased adenylate cyclase activity. Adenylate cyclase activities measured in the presence of GTP, GTP plus prostaglandin E1, and GTP plus (?)-isoproterenol are increased two- to threefold in membranes prepared from treated cells. In contrast, basal activity is potentiated only 20 to 50% and activity determined in the presence of fluoride is only marginally altered. Also of interest is the increase in cholera toxin activation of cyclase activity in the treated cells. Lower concentrations of cholera toxin (5 ng/ml) are required to achieve maximal stimulation of cyclase activity from picolinic acid-treated and isoleucine-deprived cells; maximal stimulation of control cell adenylate cyclase is attained with 25 to 50 ng/ml cholera toxin. Picolinic acid treatment and isoleucine deficiency both have been shown to arrest NRK cell growth in the G1 phase of the cell cycle. However, results with cells arrested in G1 by serum starvation and by growth to high cell population density indicate that G1 specific growth arrest does not appear to account for the increase in hormonal responsiveness. Chelation of inhibitory metals and proteolytic activation also do not appear to be involved in the mechanism by which picolinic acid enhances cyclic AMP formation. Rather, the results suggest that the treated cells have an increased amount of an active GTP-dependent function required for hormone and cholera toxin stimulation of adenylate cyclase. Thus, picolinic acid treatment and isoleucine deprivation may provide a useful means of modulating the GTP-dependent step required to potentiate hormonal responsiveness.  相似文献   

2.
Summary The clonal growth and serial propagation of rat esophageal epithelial cells in low serum-containing medium has been achieved without feeder layers or conditioned medium. To date, a total of four lines have been developed and maintained for as many as 40 passages in culture. Growth of the cells was possible only after modifying the culture medium (PFMR-4) by reducing the calcium concentration from 1 to 0.1 mM, and by adding low levels of dialyzed fetal bovine serum and seven growth factors; i.e. epidermal growth factor, hydrocortisone, ethanolamine, phosphoethanolamine, insulin, transferrin, and cholera toxin. Cell lines have been developed from both explant outgrowths and enzyme dissociated esophagi. The epithelial nature of the cells was confirmed by electron microscopy and immunological methods. Clonal growth studies revealed that optimal cell growth occurred in medium containing 2.4% dialyzed fetal bovine serum and 0.1 mM calcium. Calcium levels of 0.3 mM or higher caused the cells to stratify and undergo terminal differentiation. Coating the culture dishes with collagen, or a combination of collagen, fibronectin, and bovine serum albumin, increased both the cell growth rate and the colony forming efficiency. The successful long term culture of rat esophageal epithelial cells permits their use as models in studies concerned with esophageal differentiation and carcinogenesis. This investigation was supported by U.S. Public Health Service Grant CA 28950, awarded by the National Cancer Institute, Bethesda, MD.  相似文献   

3.
The ability of platelet-derived growth factor and fibroblast growth factor to stimulate the initiation of DNA synthesis in quiescent BALB/c-3T3 cells was enhanced by cholera toxin. However, the addition of cholera toxin to unsupplemented medium was not mitogenic, nor did cholera toxin increase the mitogenic potential of mediuum supplemented with platelet-poor plasma. The enhancement of serum-induced DNA synthesis by cholera toxin was due to a specific effect on competence formation and not plasma-controlled progression. Cholera toxin increased the rate of competence formation during a transient exposure of quiescent cells to platelet-derived growth factor; this rate was further increased by the addition of isobutylmethylxanthine, a cyclic nucleotide phosphodiesterase inhibitor. Intracellular cyclic AMP concentrations in quiescent BALB/c-3T3 cells were increased 2- to 3-fold after the addition of cholera toxin. The addition of cholera toxin plus 30 m?M isobutylmethylxanthine caused an even greater (7- to 8-fold) increase in the cellular levels of cyclic AMP. That these increases in cyclic AMP concentrations mediated at least part of the increased sensitivity of quiescent cells to competence factors was substantiated by the observation that 0.01 to 1 mM monobutrylcyclic AMP or 8-bromocyclic AMP also caused a concentration-dependent potentiation of competence formation in quiescent cells during a transient exposure to platelet-derived growth factor.  相似文献   

4.
A genomic DNA fragment from Saccharomyces cerevisiae which contains the SRA5 (=PDE2) gene, coding for a low Km cAMP-phosphodiesterase, was transfected into Chinese hamster ovary cells. Clones carring the cAMP-phosphodiesterase gene were capable of growth in the presence of cholera toxin, which slows the growth of untransfected cells by elevating their cAMP levels. The cholera toxin-resistant transfected cell lines expressed high levels of cAMP-phosphodiesterase mRNA and cAMP-phosphodiesterase activity. Basal intracellular cAMP levels were not significantly affected by the presence of the yeast cAMP-phosphodiesterase gene, but elevation of cAMP levels in response to cholera toxin or prostaglandin E1 was suppressed. Induction of the cAMP-responsive tyrosine aminotransferase promoter by cholera toxin was also blocked in cell lines carrying the yeast cAMP-phosphodiesterase gene. Cholera toxin-resistant transfected cell lines were sensitive to the growth inhibitory effects of N6,02'-dibutyryladenosine 3',5'-monophosphate, which can be used to bypass the effects of the yeast cAMP-phosphodiesterase.  相似文献   

5.
Cholera toxin was used in an attempt to inhibit epidermal growth factor stimulated 3T3 cell division. Instead, cholera toxin alone at low concentrations (10(-10) M), was able to stimulate cell division and could augment EGF stimulated cell division. The mitogenic effect of cholera toxin can occur despite a dramatic increase in the intracellular levels of cAMP in 3T3 cells. Cholera toxin stimulated mitogenesis could not be mimicked by choleragenoid, the binding but inactive subunit of cholera toxin, or by other agents which elevate cAMP levels in 3T3 cells.  相似文献   

6.
Although much is known about the actions of cholera toxin on intestinal and extra-gastrointestinal tissues, almost nothing is known about the interaction of this toxin with cells in the stomach. In the present study, we prepared 125I-labeled cholera toxin (1900 Ci/mmol) and examined the binding of this radioligand to dispersed Chief cells from guinea pig stomach. Moreover, we examined the actions of cholera toxin on cellular cAMP and pepsinogen secretion from Chief cells. Binding of 125I-labeled cholera toxin could be detected within 5 min, was maximal by 60 min, and was increased by increasing the radioligand or cell concentrations. Inhibition of binding by unlabeled toxin indicated a dissociation constant of 3 nM and 8.7 X 10(5) cholera toxin receptors per Chief cell. In contrast to the rapidity of binding, a cholera toxin-induced increase in cAMP and pepsinogen secretion was not detected until 30-45 min of incubation. A 3 to 6-fold increase in cAMP and pepsinogen secretion was observed with maximal concentrations of cholera toxin. Binding of 125I-labeled cholera toxin and the toxin's actions on cAMP and pepsinogen secretion were inhibited by the B subunit of the toxin. Binding was not altered by other agents that have been shown to stimulate pepsinogen secretion (carbachol, CCK-8, secretin, vasoactive intestinal peptide, prostaglandin E1, or forskolin). These data indicate that Chief cells from guinea pig stomach possess a specific class of cholera toxin receptors. Binding of cholera toxin to these receptors causes an increase in cellular cAMP that stimulates pepsinogen secretion.  相似文献   

7.
Summary Normal rat kidney cells infected with a cold-sensitive mutant of mouse sarcoma virus [NRK(MSV-1b)] morphologically transform when exposed to adenosine 3′∶5′ cyclic monophosphate (cAMP) at the restrictive temperature. The cAMP-induced morphological changes occur rapidly and are reversible. Agents capable of elevating endogenous levels of cAMP [prostaglandin E1 (PGE1) and cholera toxin (CT)] induced morphological transformation of NRK(MSV-1b) cells at the restrictive temperature that was concentration dependent, potentiated by cAMP phosphodiesterase inhibitors, and not prevented by inhibitors of DNA, RNA, and protein synthesis. Prostaglandin E1 stimulated a transient increase in the intracellular level of cAMP with a concomitant morphological transformation and reversion of cells as cAMP levels decline. The maximum increase is reached by 10 min, followed by a decline to near basal level by 80 min. In contrast, incubation of cells with CT resulted in irreversible morphological transformation and increased levels of cAMP first detectable by 1 hr with maximum levels reached by 24 hr. Heated CT (100°C, 20 min) was without effect. Addition of CT to reverted PGE1-treated cells resulted in morphological transformation suggesting the existence of discrete receptors in NRK (MSV-1b) cells. This research was supported by Grant BC-207 from the American Cancer Society and Cancer Research Emphasis Grant R01 CA 19714 within the Virus Cancer Program of the National Cancer Institute.  相似文献   

8.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

9.
The acidic glycosphingolipid, ganglioside GM1, which is the binding site for cholera toxin on many cell types, was identified by chemical and by flow cytometric analyses of mouse interleukin 3-dependent, bone marrow culture-derived mast cells (BMMC). Ganglioside GM1 and other acidic glycosphingolipids were isolated from BMMC by chloroform/methanol extraction and chromatography on DEAE-Sephadex and were analyzed by thin layer chromatography. The presence of ganglioside GM1 in the BMMC extract was demonstrated by its co-migration with ganglioside GM1 standard in thin layer chromatography and by the binding of peroxidase-labeled cholera toxin B subunit to both molecules. As assessed by fluorescence flow cytometric analysis of the binding of fluorescein-conjugated cholera toxin B subunit, the majority of BMMC expressed ganglioside GM1 on their surface, and the total presentation per cell increased as cells progressed from the G1 to S to G2 + M phases of the cell cycle. The addition of increasing amounts of cholera toxin starting with 0.08 microgram/ml to BMMC cultured in 50% WEHI 3-conditioned medium containing IL 3 for 48 hr caused the adhesion of BMMC to the tissue culture flasks to increase in a dose-related manner, from less than 1% adherent cells in cultures without toxin to a plateau value of approximately 17% adherent in the presence of 1.25 micrograms/ml of toxin. The histamine content of BMMC increased from 26.7 +/- 3.59 ng/10(6) cells (mean +/- SD, n = 4) for control cultures to 201 +/- 17.4 ng/10(6) cells (mean +/- SD, n = 4) for nonadherent cells and to 588 +/- 89.4 ng/10(6) cells (mean +/- SD, n = 4) for adherent cells after 48 hr of culture in 0.31 microgram/ml cholera toxin, which was the optimal dose for nonadherent and adherent populations. The content of another preformed intragranular mediator, beta-hexosaminidase, did not increase appreciably in the presence of cholera toxin (n = 3). The increase in the histamine content of BMMC after the addition of 0.31 microgram/ml cholera toxin was detectable at 4 hr, plateaued by 24 to 48 hr, and gradually declined over the next 6 days. Cholera toxin also augmented the histamine content of BMMC in the presence of purified synthetic IL 3. Preincubation of whole cholera toxin with purified ganglioside GM1 inhibited the histamine-augmenting effects of cholera toxin on BMMC, indicating that the effect was not due to a contaminant, and neither the A nor B subunit of cholera toxin alone increased the histamine content of BMMC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The relative expression of the immunoglobulin superfamily members Thy-1 and L1 and the neural cell adhesion molecule (N-CAM) in PC12 cells grown in the presence of nerve growth factor (NGF), cholera toxin, or both has been quantified. Whereas NGF treatment induced increases in the cell surface expression of all three glycoproteins, treatment with cholera toxin resulted in the specific induction of L1. During the first few days of culture, cholera toxin acted synergistically with NGF to promote increases in neuritic outgrowth and the synthesis and cell surface accumulation of the 140- and 180-kilodalton subunits of N-CAM. In contrast, over the same period of culture, cholera toxin inhibited the NGF induction of Thy-1 and L1. Over longer periods of culture (3-5 days), cholera toxin inhibited the NGF induction of N-CAM and neurite outgrowth. A similar pattern of synergistic and inhibitory responses was observed when differentiation was induced by fibroblast growth factor (FGF) rather than NGF or when cholera toxin was replaced with forskolin. These data suggest that intracellular cyclic AMP can differentially modulate cell surface glycoprotein expression induced by either NGF or FGF. Of the three cell surface glycoproteins we have studied, temporal changes in N-CAM expression correlate best with the morphological differentiation status of PC12 cells.  相似文献   

11.
Summary Exogenous cyclic AMP and dibutyryl cyclic AMP decreased the relative ciliary activity values of tracheal organ cultures. In contrast, theophylline and cholera toxin were not ciliostatic. The use of a radioimmunoassay for cyclic AMP indicated that all of the tested substances increased intracellular cyclic AMP levels to some extent (from 3-fold for cholera toxin to almost 40-fold for dibutyryl cyclic AMP). Physical inactivation of explants by either freeze-thaw or heat destroyed all ciliary activity and greatly decreased intracellular cyclic AMP levels. Cyclic AMP levels of explants remained relatively constant during in vitro cultivation. Three strains ofMycoplasma pneumoniae were found to contain extremely low amounts of cyclic AMP. Infection of tracheal explants produced a significant decrease in relative ciliary activity, but only a slight decline in organ-culture cyclic AMP levels. This study was supported in part by Grant AI 12559 from the National Institutes of Health. The supply of cholera toxin from Dr. R. A. Finkelstein is most appreciated as are the assistance and advice of J. A. Engelhardt and Y. D. B. Stahl.  相似文献   

12.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

13.
Summary A serum-free system has been developed for selective growth and long-term culture of rat thymic epithelial cells. The growth media is a modification of McKeehan's WAJC 404, plus insulin, cholera toxin, dexamethasone, and epidermal growth factor. Cultures have been continuously passaged and maintained for over 6 mo., and a cloned cell line, TEA3A1, has been established. These cells are epithelial, judging by morphology and ultrastructure, and are positive for A2B5 and thymosin α markers for thymic endocrine cells. This work was partly supported by grant PCM-834 0582 from the National Science Foundation, Washington, DC, and grant P01 CA 37589-2 from the National Cancer Institute, Bethesda, MD.  相似文献   

14.
Cholera toxin receptors have been isolated from both a mouse fibroblast (Balbc/3T3) and mouse lymphoid cell line labeled by the galactose oxidase borotritiide technique. Tritiated receptor-toxin complexes solubilized in NP40 were isolated by addition of toxin antibody followed by a protein A-containing strain of Staphylococcus aureus. In both cell types by far the major species of toxin receptor isolated was ganglioside in nature, although galactoproteins were also present in the immune complexes. Whether the galactoproteins form part of a toxin-receptor complex or are artifacts of the isolation procedure is presently unclear. The relative specificity of cholera toxin for a carbohydrate sequence in a glycolipid suggests that the toxin might prove a useful tool in establishing the function and organization of glycolipids in membranes. For example, interaction of cholera toxin with the mouse lymphoid cell line was shown to result in patching and capping of bound toxin, raising the possibility that the glycolipid receptor interacts indirectly with cytoskeletal elements. Cholera toxin might also be used to select for mutant fibroblasts lacking the toxin receptor and therefore having an altered glycolipid profile. Such mutants might prove useful in establishing the relationship (if any) between modified glycolipid pattern and other aspects of the transformed phenotype. Attempts to isolate mutants, based on the expectation that growth of cells containing the toxin receptor would be inhibited by the increase in cAMP levels normally induced by cholera toxin, proved unsuccessful. Cholera toxin failed to inhibit significantly the growth of either Balbc or Swiss 3T3 mouse fibroblasts although it markedly elevated cAMP levels.  相似文献   

15.
M Lanotte  N Lacaze 《The EMBO journal》1985,4(12):3099-3104
The membrane monosialoganglioside GM1, the high affinity receptor for cholera toxin, is generally considered ubiquitous on normal cells. It was found to be abundant both on normal mature hemopoietic cells and on leukemic cells. By contrast, the normal factor-dependent cell lines, which achieve indefinite proliferation in the presence of the multilineage hemopoietic growth factor apparently displayed the unique character of having low or undetectable levels of surface membrane and cytoplasmic cholera toxin receptors. These results were obtained by the Scatchard analysis of 125iodinated toxin binding, immunofluorescence studies and gel electrophoresis autoradiography. This corroborated the fact that these cells were highly resistant to growth inhibition by cholera toxin (microM to fM) while normal mature cells and leukemic cells of similar phenotype were sensitive.  相似文献   

16.
GM1 (II3Neu5Ac-GgOse4Cer)-oligosaccharide was prepared from the ganglioside by ozonolysis and alkaline fragmentation, reductively aminated and coupled to the heterobifunctional cross-linker succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate. The resulting derivative reacted with free sulfhydryl groups and readily cross-linked to cell surface components on rat glioma C6 cells which are GM1-deficient. Attachment of the GM1-oligosaccharide derivative, which was monitored by increased binding of 125I-cholera toxin to the cells, was both time- and concentration-dependent. Prior treatment of the cells with dithiothreitol enhanced the attachment by generating additional free sulfhydryl groups. The affinity of cholera toxin for cells treated with the GM1-oligosaccharide derivative or with GM1 was similar. The nature of the newly generated toxin receptors was determined by Western blotting. Membranes from derivatized cells were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved components were electrophoretically transferred to a nitrocellulose sheet which was overlain with 125I-cholera toxin. The toxin bound to a wide variety of membrane proteins, most of which were trypsin-sensitive. No such binding was observed using membranes from control cells. Although the GM1-neoganglioproteins newly generated on the surface of rat glioma C6 cells readily bound cholera toxin, the cells did not become more responsive to the toxin as measured by increased production of cyclic AMP or activation of adenylate cyclase. In contrast, cells exposed to GM1 became highly responsive to the toxin. Thus, neoganglioproteins on the cell surface appear to behave as nonfunctional receptors for cholera toxin.  相似文献   

17.
Epidermal growth factor (EGF) stimulated the formation of inositol trisphosphate, inositol bisphosphate, and inositol phosphate in density-arrested BALB/c/3T3 cells pretreated for 1.5-4 h with cholera toxin, a potent activator of adenyl cyclase, and isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor. Concomitant addition of cholera toxin, IBMX, and EGF to cells did not increase inositol phosphate levels, and pretreatment with both agents was more effective than pretreatment with either alone. Pre-exposure of cells to cholera toxin and IBMX also enhanced the increase in inositol phosphates occurring in response to platelet-derived growth factor (PDGF). Preincubation of cells with cholera toxin and IBMX in the presence of cycloheximide abolished the effects of these agents on EGF- and PDGF-stimulated inositol phosphate production as well as the lesser increase in inositol phosphate formation produced by cholera toxin and IBMX in the absence of hormone. Preincubation of cells with cycloheximide did not affect EGF binding or the ability of PDGF to stimulate inositol phosphate formation. Cycloheximide also precluded EGF-induced inositol phosphate production when presented to cells 3 h after addition of cholera toxin and IBMX. These findings show that, under the appropriate conditions, EGF is capable of stimulating inositol phosphate formation in a nontransformed cell line.  相似文献   

18.
End buds from 4- to 5-week-old rat mammary glands were isolated and cultured within a rat tail tendon collagen gel matrix. Media containing equine serum or porcine serum and cholera toxin promoted growth, but not the production of casein or thioesterase II, nor did they induce a state of differentiation as assessed by cell ultrastructure. Medium supplemented with only 5% porcine serum, insulin and cholera toxin did not support growth or differentiation. However, when prolactin, estradiol, progesterone and hydrocortisone were added to this medium, growth was stimulated greatly and a differentiated state was induced as assessed by the production of casein and thioesterase and by the appearance of a highly secretory ultrastructure.  相似文献   

19.
Schwann cell growth factors.   总被引:24,自引:0,他引:24  
Purified rat Schwann cells were found to proliferate very slowly in normal growth medium containing 10% fetal calf serum (FCS). Crude extracts of bovine pituitary or brain markedly enhanced Schwann cell growth, while similar extracts of nerve roots, liver and kidney did not. Pituitary extracts were more potent than brain extracts, and extracts from both anterior and posterior pituitary were active. The mitogenic activity of pituitary extracts was reduced by treatment with trypsin, and abolished by pronase and by boiling. A variety of known anterior and posterior pituitary hormones, as well as fibroblast, epidermal and nerve growth factors, were not mitogenic. FCS (greater than 1%) was required for Schwann cell proliferation, but even high concentrations of FCS did not substitute for pituitary or brain extracts, and serum from various other species did not support Schwann cell growth. Although various agents that increase cyclic AMP levels (such as cholera toxin) had been shown to be Schwann cell mitogens, extracts of pituitary or brain did not increase cyclic AMP levels. Extracts of various bovine tissues, including pituitary, brain, liver and kidney, acted synergistically with cholera toxin in stimulating Schwann cell proliferation, although the increase in cyclic AMP induced by the mixture was not greater than that seen with cholera toxin alone. We conclude that there are at least two separate pathways for stimulating Schwann cell division, only one of which involves an increase in intracellular cyclic AMP.  相似文献   

20.
L Ma  X Xu  S Cui    D Sun 《The Plant cell》1999,11(7):1351-1364
The role of heterotrimeric G proteins in pollen germination, tube growth, and signal transduction of extracellular calmodulin (CaM) was examined in lily pollen. Two kinds of antibodies raised against animal Gzalpha, one against an internal sequence and the other against its N terminus, cross-reacted with the same 41-kD protein from lily pollen plasma membrane. This 41-kD protein was also specifically ADP ribosylated by pertussis toxin. Microinjection of the membrane-impermeable G protein agonist GTP-gamma-S into a pollen tube increased its growth rate, whereas microinjection of the membrane-impermeable G protein antagonist GDP-beta-S and the anti-Galpha antibody decreased pollen tube growth. The membrane-permeable G protein agonist cholera toxin stimulated pollen germination and tube growth. Anti-CaM antiserum inhibited pollen germination and tube growth, and this inhibitory effect was completely reversed by cholera toxin. The membrane-permeable heterotrimeric G protein antagonist pertussis toxin completely stopped pollen germination and tube growth. Purified CaM, when added directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in plasma membrane vesicles, and this increase in GTPase activity was completely inhibited by pertussis toxin and the nonhydrolyzable GTP analogs GTP-gamma-S and guanylyl-5'-imidodiphosphate. The GTPase activity in plasma membrane vesicles was also stimulated by cholera toxin. These data suggest that heterotrimeric G proteins may be present in the pollen system where they may be involved in the signal transduction of extracellular CaM and in pollen germination and tube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号