首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   

4.
5.
The chloramphenicol acetyltransferase gene cat-86 is induced through a mechanism that is a variation of classical attenuation. Induction results from the destabilization of an RNA stem-loop that normally sequesters the cat-86 ribosome-binding site. Destabilization of the stem-loop is due to the stalling of a ribosome in the leader region of cat-86 mRNA at a position that places the A site of the stalled ribosome at leader codon 6. Two events can stall ribosomes at the correct location to induce cat-86 translation: addition of chloramphenicol to cells and starvation of cells for the amino acid specified by leader codon 6. Induction by amino acid starvation is an anomaly because translation of the cat-86 coding sequence requires all 20 amino acids. To explain this apparent contradiction we postulated that amino acid starvation triggers intracellular proteolysis, thereby providing levels of the deprived amino acid sufficient for cat-86 translation. Here we show that a mutation in relA, the structural gene for stringent factor, blocks intracellular proteolysis that is normally triggered by amino acid starvation. The relA mutation also blocks induction of cat-86 by amino acid starvation, but the mutation does not interfere with chloramphenicol induction. Induction by amino acid starvation can be demonstrated in relA mutant cells if the depleted amino acid is restored at very low levels (e.g., 2 micrograms/ml). A mutation in relC, which may be the gene for ribosomal protein L11, blocks induction of cat-86 by either chloramphenicol or amino acid starvation. We believe this effect is due to a structural alteration of the ribosome resulting from the relC mutation and not to the relaxed phenotype of the cells.  相似文献   

6.
Induction of the chloramphenicol acetyltransferase gene cat-86 in Bacillus subtilis results from the activation of translation of cat-86 mRNA. The inducers, chloramphenicol and amicetin, are thought to enable ribosomes to destabilize a stem-loop structure in cat-86 mRNA that sequesters the ribosome binding site for the cat-86 coding sequence, designated RBS-3. The region of cat-86 mRNA which is 5' to the stem-loop contained two additional ribosome binding sites, RBS-1 and RBS-2, located 84 and 56 nucleotides, respectively, upstream from RBS-3. RBS-1 and RBS-2 were each followed by a potential translation initiation codon and a short open reading frame. Bal 31-generated deletions into the 5' end of the regulatory region that removed RBS-1 but did not enter RBS-2 caused a fourfold decrease in the uninduced and chloramphenicol-induced level of cat-86 expression and a more than 10-fold reduction in the amicetin-induced level of expression. Deletions that removed both RBS-1 and RBS-2 but did not enter the stem-loop abolished both chloramphenicol- and amicetin-inducible expression. These data indicate that RBS-2 and sequences 3' to RBS-2 are minimally essential to chloramphenicol induction. However, the presence of RBS-1 in the mRNA elevated the maximum level of expression obtained during chloramphenicol induction. These studies also demonstrate that induction of cat-86 by amicetin is highly dependent on RBS-1. To determine whether a correlation existed between RBS-1 and amicetin inducibility, we examined the sequence of the regulatory regions for two natural variants of cat-86, cat-66 and cat-57, which are chloramphenicol inducible but are very poorly induced by amicetin. Both contained nucleotide sequence differences from cat-86 in the vicinity of RBS-1 that would prevent translation of the leader peptide associated with RBS-1 in cat-86. In contrast, the regulatory regions got the three genes were virtually identical in the vicinity of RBS-2. These data indicate that efficient induction by amicetin requires sequences that are not essential for induction by chloramphenicol.  相似文献   

7.
Z Gu  R Harrod  E J Rogers    P S Lovett 《Journal of bacteriology》1994,176(20):6238-6244
Inducible chloramphenicol resistance genes cat and cmlA are regulated by translation attenuation. For both genes, the leader codons that must be translated to deliver a ribosome to the induction site specify a peptide that inhibits peptidyltransferase in vitro. The antipeptidyltransferase activity of the peptides is thought to select the site of ribosome stalling that is essential for induction. Using variations of the cat-86 leader-encoded 5-mer peptide MVKTD, we demonstrate a correlation between the in vitro antipeptidyltransferase activity and the ability of the same peptide to support induction by chloramphenicol in vivo. MVKTD footprints to nucleotides 2058, 2059, and 2060 in 23S rRNA. In vivo methylation of nucleotide 2058 by the ermC methylase interferes neither with cat-86 induction nor with peptide inhibition of peptidyltransferase. The methylation eliminates the competition that normally occurs in vitro between erythromycin and MVKTD. MVKTD inhibits the peptidyltransferase of several eubacteria, a representative Archaea species, and the eukaryote Saccharomyces cerevisiae. Bacillus stearothermophilus supports the in vivo induction of cat-86, and the RNA that is phenol extracted from the 50S ribosomes of this gram-positive thermophile is catalytically active in the peptidyltransferase assay and sensitive to peptide inhibition. Our results indicate that peptidyltransferase inhibition by a cat leader peptide is essential to induction, and this activity can be altered by minor changes in the amino acid sequence of the peptide. The broad range of organisms shown to possess peptide-inhibitable peptidyltransferase suggests that the target is a highly conserved component of the ribosome and includes 23S rRNA.  相似文献   

8.
9.
10.
11.
Z Gu  P S Lovett 《Journal of bacteriology》1995,177(12):3616-3618
Expression of the chloramphenicol resistance gene cat-86 is regulated by translation attenuation. Among the three ribosomally targeted antibiotics that can induce the gene, only amicetin has an unknown mode of action. Here we demonstrate that the nucleoside antibiotic amicetin is an inhibitor of bacterial peptidyl transferase. Thus, the three inducers of cat-86, chloramphenicol, erythromycin, and amicetin, interact with the peptidyl transferase region of bacterial ribosomes.  相似文献   

12.
The mutation sup-3 in Bacillus subtilis suppresses ochre (TAA) mutations at each of three codons in the 5' end of the cat-86 coding sequence. The suppressor is shown to insert lysine at ochre codons. The efficiency of suppression by sup-3 is about 15%, as determined by changing a cat-86 Lys codon (codon 12) to an ochre codon and measuring the level of CAT in the suppressor-containing strain. The results obtained are discussed in light of previous observations that ochre mutations at cat leader codons 2 and 3 can be phenotypically suppressed by sup-3, whereas ochre mutations at leader codons 4 and 5 cannot. Translation of the cat leader is essential to inducible expression of cat. Our data support the interpretation that the nature of amino acids 2 through 5 of the leader peptide contributes to determining whether chloramphenicol can stall a ribosome in the leader, which in turn leads to induction of cat expression.  相似文献   

13.
14.
15.
Transport of the essential amino acids arginine and lysine is critical for the survival of mammalian cells. The adaptive response to nutritional stress involves increased translation of the arginine/lysine transporter (cat-1) mRNA via an internal ribosome entry site (IRES) within the mRNA leader. Induction of cat-1 IRES activity requires both translation of a small upstream open reading frame (uORF) within the IRES and phosphorylation of the translation initiation factor eIF2alpha. We show here that translation of the upstream ORF unfolds an inhibitory structure in the mRNA leader, eliciting a conformational change that yields an active IRES. The IRES, whose activity is induced by amino acid starvation, is created by RNA-RNA interactions between the 5' end of the leader and downstream sequences. This study suggests that the structure of the IRES is dynamic and regulation of this RNA structure is a mechanism of translational control.  相似文献   

16.
17.
18.
19.
20.
The translational initiation region of the mRNA for the replication initiation protein (RepA) of pMU720 is predicted to be sequestered in an inhibitory secondary structure designated stem-loop III. Activation of repA translation requires both the disruption of stem-loop III by ribosomes involved in the translation and termination of the leader peptide RepB and the formation of a pseudoknot, a tertiary RNA structure. Disruption of stem-loop III by site-directed mutagenesis was found to be insufficient to allow high repA expression in the absence of pseudoknot formation, indicating that the pseudoknot acts as an enhancer of repA translation. Furthermore, extending the length of the leader peptide RepB and changing the distance between the pseudoknot and repA Shine-Dalgarno sequence were found to have major effects on the translation of repA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号