首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents—dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35—were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

2.
We have examined the ability of nonionic detergents to solubilize thyroid peroxidase from a porcine thyroid particulate fraction, as measured by the release of peroxidase activity into the supernatant fraction after centrifugation at 105,000 X g for 1 hour and the retardation of the supernatant peroxidase of Sepharose 6B. The parameters of peroxidase solubilization by Triton X-100 have been investigated in detail. Under optimum conditions, 60 to 95% of the thryoid peroxidase and about 50% of the total protein is released into the 105,000 X g, 1-hour supernatant. Under the optimum conditions established with Triton X-100, a series of Brij detergents of different chemical structure were equally effective in releasing peroxidase and protein. The protein patterns of the supernatants obtained with these detergents were similar on sodium dodecyl sulfate-polyacrylamide electrophoresis gels, suggesting that the detergents studied release similar membrane proteins. The Triton X-100 and Brij 58 supernatants were chromatographed separately on Sepharose 6B equilibrated with 0.1% Triton X-100 or Brij 58, respectively. In both cases, 75 to 80% of the peroxidase activity was retarded, thereby indicating that the nonionic detergents effect solubilization of the peroxidase rather than dispersal of nonsedimentable membrane fragments. These studies report the first successful solubilization of thyroid peroxidase by nonionic detergents. Together with previous evidence from our laboratory, these experiments indicate that thyroid peroxidase is an integral membrane protein.  相似文献   

3.
W L Dean  C P Suárez 《Biochemistry》1981,20(7):1743-1747
The interaction of Triton X-100 and other nonionic detergents with a delipidated preparation of the Ca2+ ATPase from sarcoplasmic reticulum has been studied. Binding of radiolabeled Triton X-100 was determined by column chromatography at 6 degrees C, and two classes of binding sites were observed. Below the critical micelle concentration (cmc), binding of Triton occurred at 35-40 equivalent sites on the delipidated ATPase with a binding constant of 2.7 X 10(4) M-1. Near the cmc cooperative binding of an additional 70 molecules of the detergent was observed. The binding of monomeric Triton X-100 below the cmc was associated with a parallel activation of over half of the ATPase activity, and the remainder of the activity was recovered after the detergent concentration was increased to the cmc. The ability to reactivate ATPase activity was more dependent on the polar poly(oxyethylene) portion of nonionic detergents than on the hydrocarbon portion. Generalizing for all amphiphiles, these results suggest that there are discrete binding sites on the Ca2+ ATPase for phospholipid molecules in the native membrane and that the polar head groups of phospholipids interact more strongly with the protein than the hydrophobic acyl chains. Perturbations in micelle structure were observed for several nonionic detergents by measurement of cis-parinaric acid fluorescence and differential scanning calorimetry, and discontinuities in Arrhenius plots occurred at the transition temperature of the detergent used for reactivation of ATPase activity. It is concluded that both the physiol state of teh micelle and the intrinsic behavior of the ATPase polypeptide affect the temperature dependence of ATPase activity.  相似文献   

4.
The properties of Ca(2+)-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C(12)E(8)) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca(2+)-ATPase with a greater specific activity than solubilization with C(12)E(8) or Triton X-100. DHPC was determined to be superior to C(12)E(8); while that the C(12)E(8) was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca(2+)-ATPase retained the E1Ca-E1*Ca conformational transition as that observed for native microsomes; whereas the C(12)E(8) and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca(2+) transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C(12)E(8) and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca(2+)-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C(12)E(8) and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca(2+) uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca(2+)-ATPase retained more organized and native secondary conformation compared to C(12)E(8) and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C(12)E(8) and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca(2+)-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C(12)E(8) and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein-lipid interactions in the function of the membrane-bound enzyme.  相似文献   

5.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The effects of solubilization with Triton X-100 or Brij 58 on the polypeptide composition and the substrate affinity of the tonoplast H+-ATPase of plants of Mesembryanthemum crystallinum performing C3 photosynthesis or crassulacean acid metabolism (CAM) have been compared. Although all known subunits of the tonoplast H+-ATPase were present in the fraction of solubilized proteins after treatment with Brij 58 or Triton X-100, with Triton X-100 the apparent KM value for ATP hydrolysis was increased by a factor of 1.8 and 1.5 in preparations from C3 and CAM plants, respectively, even at low concentrations in contrast to treatment with Brij 58. This is explained by structural changes of the tonoplast H+-ATPase due to the Triton X-100 treatment. After solubilization with Brij 58 the tonoplast H+-ATPase was partially purified by Superose-6 size-exclusion FPLC. When Brij 58 was present, addition of lipids to the chromatography buffer was not necessary to conserve enzyme activity in contrast to previously described purification methods using Triton X-100. The substrate affinity of the partial purified H+-ATPase was similar to the substrate affinity obtained for ATP-hydrolysis of native tonoplast vesicles, indicating that the enzyme structure during partial purification was conserved by using Brij 58. The results underline that the lipid environment of the tonoplast H+-ATPase is important for enzyme structure and function.  相似文献   

7.
Potassium retention in membraneless thymus lymphocyte nuclei   总被引:2,自引:0,他引:2  
Nonionic detergents, Triton X-100 and Brij 58, removed lipoid membranes of suspended thymus lymphocytes within 5 minutes. The mobilization and solubilization of cytoplasmic and nuclear proteins occurred much faster (less than 5 minutes) with Triton X-100 treatment than with Brij 58 treatment (less than 10 minutes). In Triton X-100 treated cells the loss of K+ was complete within 5 minutes whereas with Brij 58 treatment the K+ loss was not complete after 10 minutes. Thus, the high concentration of K+ and the low concentration of Na+ in the nuclei can remain near normal for minutes in the absence of membrane structures. If the ions were in free solution within the cells, disruption of membrane integrity should lead to equilibration of the ions with external media within seconds. The decrease of K+ in the Brij 58 treated cells with exposure time was correlated with the solubilization of the proteins. These results support the view that K+ and Na+ are not freely dissolved in the cellular water, but are co-compartmentalized with proteins inside the living cell.  相似文献   

8.
Detergent extraction of brain slices and mouse fibroblast 3T3 cells was performed to determine rates and relative amounts of extraction of inositol versus the glycolytic enzymes. The two detergents, Triton X-100 and Brij 58, led to similar results for extraction of myo-inositol. The extraction of enzymes from brain slices or cells varied with the detergent. In brain slices, a buffered solution containing 0.2% of the detergent Brij 58 led to the extraction of 85% of the inositol before 3% of the aldolase or before 37% of either lactate dehydrogenase or triose phosphate isomerase was extracted. In contrast, with 0.1% Triton X-100 in isotonic phosphate-buffered saline, when 70% of the inositol was extracted, 33% of the aldolase and 48% of the triose phosphate isomerase were extracted. Lesser amounts of aldolase and glyceraldehyde phosphate dehydrogenase were extracted than most of the other glycolytic enzymes under all conditions, implying that these enzymes may be interacting with non-extractable subcellular components. In 3T3 cells, both detergents were of similar effectiveness for inositol extraction. Triton X-100 caused 89% of the inositol to be released and Brij 58 caused 84% to be released. With the enzymes, Brij 58 caused between 15 and 38% extraction and Triton X-100 caused between 61 and 85% extraction of the different glycolytic enzymes. Thus Brij 58 was as effective as Triton X-100 in inositol extraction but not nearly as effective in glycolytic enzyme extraction. The results demonstrate that inositol leakage from tissues or cells is a better indicator of detergent-mediated alterations in membrane porosity than glycolytic enzyme leakage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
J W Soper  P L Pedersen 《Biochemistry》1976,15(12):2682-2690
The hydrolytic activity of the ATPase bound to purified inner membrane vesicles of rat liver mitochondria can be increased threefold by washing extensively with a high ionic strength phosphate buffer. The specific ATPase activities of such phosphate-washed membranes are the highest reported to date for a mitochondrial membrane preparation (21-24 mumol of ATP hydrolyzed min-1 mg-1 in bicarbonate buffer at 37 degrees C). Deoxycholate (0.1 mg/mg of protein) extracts from these membranes a soluble, cold-stable ATPase complex which exhibits a specific activity under optimal assay conditions of 12 mumol of ATP hydrolyzed min-1 mg-1. This complex is not sedimented by centrifugation at 201000 g for 90 min, and readily passes through a 250-A Millipore filter. The ATPase activity of the soluble complex is inhibited 95% by 2.4 muM oligomycin. In addition, inhibitions of 60% or better are obtained in the presence of 1-8 muM dicyclohexylcarbodiimide, p-chloromercuribenzoate, venturicidin, and aurovertin. While a similar complex may be extracted with Triton X-100 this preparation is always lower in both specific activity and in inhibitor sensitivities than the complex extracted with deoxycholate. Detergents of the Tween and Brij series and other detergents of the Triton series are also much less effective than deoxycholate in solubilizing the oligomycin-sensitive. ATPase complex of rat liver. It is concluded that deoxycholate is superior to other detergents as an extractant of the oligomycin-sensitive ATPase complex of rat liver mitochondria, and that the complex extracted with deoxycholate possesses a closer similarity to the membrane-associated ATPase than does the complex extracted with Triton X-100. These studies document the first report of a detergent-solubilized, oligomycin-sensitive ATPase preparation from rat liver mitochondria.  相似文献   

10.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

11.
11 beta-hydroxysteroid dehydrogenase (11-HSD, EC 1.1.1.146) from rat renal cortex microsomes was solubilized using several detergents, the most effective being Zwittergent 3-10 and Triton X-100. The activity ratio oxidation/reduction of the reversible reaction corticosterone in equilibrium 11-dehydrocoticosterone varied depending on the detergent used. We attribute this variation to direct effects of different detergents on enzyme kinetics. In contrast, comparable results obtained with liver 11-HSD have been attributed to the possibility of spatially separated 11-oxidase and 11-reductase activities. In order to test whether renal 11-HSD represents a uniform oxido-reductase as generally assumed, or a dual enzyme system as has been recently proposed an attempt was made to characterize 11-HSD solubilized from renal microsomal fractions using isoelectric focusing (IEF). When 11-HSD was extracted with 1% Triton X-100 (= partially solubilized fraction) a heterogenous peak pattern was obtained. In contrast, IEF of 11-HSD extracted with 10% Triton X-100 (= delipidated fraction) resulted in a single peak at about pH 5.9 with both oxidative and reductive activity at practically identical positions within the gels. From this observation we conclude that the degree of detergent solubilization of a membrane bound protein affects its amphoteric properties and that removal of membranous lipids is a prerequisite for the analysis of its behaviour. Since the more delipidated fraction of 11-HSD revealed only one activity peak the data are compatible with the uniform enzyme concept since oxidative and reductive activities of renal cortical 11-HSD could not be separated.  相似文献   

12.
The plasma membrane of erythrocytes, as of other cells, is thought to act as the barrier responsible for maintaining intracellular gradients of most ions and small molecular species between the cell and its environment. Controlled application of the nonionic detergent Brij 58 effectively opened the erythrocyte plasma membrane, as judged by electron microscopy and lipid mobilization, but the cytoplasm maintained much of its integrity for about 30 min. Release of K+ correlated well with release of protein into the surrounding medium. The results demonstrate that permeabilization of the erythrocyte plasma membrane does not result in an instantaneous equilibration of small ions, such as K+, between the cell and its environment. A comparison was made between erythrocytes treated with Brij 58 and Triton X-100. The lipid and protein solubilizing actions of Triton X-100 were not as easily separable in time as those of Brij 58. The results of treatment of the erythrocytes with different types of nonionic detergents suggest that the membranolytic and cytoplasmic protein destabilizing actions of nonionic detergents correspond with their hydrophilic-lipophilic balance numbers (HLB values). © 1994 wiley-Liss, Inc.  相似文献   

13.
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Re sat—the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.  相似文献   

14.
Ascidian sperm bind to vitelline coat N-acetylglucosamine groups of the egg bvia sperm surface N-acetylglucosaminidase. This sperm surface egg receptor remains anchored throughout penetration. Localization to the sperm surface was verified by biotinylation of intact sperm followed by solubilization in Triton X-100 and binding to streptavidin agarose. The enzyme was determined to be an integral membrane protein as judged by resistance to release by KI and high pH. Linkage of the enzyme to the sperm surface was probed through differential solubilization followed by measuring released enzymatic activity with a fluorogenic substrate. Nonionic detergents released 90% of the activity. Proteases released about 40%. No activity was released by a phosphatidyl–inositol specific phospholipase C. This finding, combined with the similarity of release level by all the detergents, including triton X-114 phase separation experiment. This observation, coupled with the finding of release by nonionic detergents, suggests that the protein is hydrophilic once released from the membrane. Thus, although clearly an integral membrane protein, the enzyme has limited bydrophobicity such as would be present in a single transmembrane sequence or extensive glycosylation. © 1994 Wiley-Liss, Inc.  相似文献   

15.
16.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   

17.
The crystalline acid carboxypeptidase from Penicillium janthinellum IFO-8070 was stabilized by the addition of nonionic surfactants, such as Triton X-100, Brij 35, Span 40, and Tween 20. In the presence of these stabilizers, extremely diluted enzyme (0.3 μg/ml of 50 mm sodium acetate buffer, pH 3.7) was almost completely stable after 2 days incubation at 25°C. About 35% and 20% of the enzyme activities were activated by the addition of Triton X-100 and Brij 35, respectively. Triton X-100 completely retarded inactivation at freezing (?15°C). On the other hand, anionic surfactants of SLS and LBSA, and cationic surfactant of cetyltrimethylammonium bromide strongly inactivated the enzyme. The inhibition of the fatty acid series was roughly proportional to the molecular weight of the inhibitor. Di-, and Tri-carboxylic acids also inhibited the enzyme activity.  相似文献   

18.
1. The choice of a suitable detergent for solubilization of UDP-glucose collagen glucosyltransferase (GGT) activities from chick embryo liver has been investigated. Several detergents were used (zwitterionic detergent as Chaps, and non-ionic detergents as Triton X-100, Nonidet P 40, Brij 35). 2. All the detergents with GGT activities were tested in Golgi apparatus, smooth and rough endoplasmic reticulum (SER, RER). 3. 80-100% GGT Golgi apparatus activity was easily solubilized at low concentrations in surfactant (0.5 mg/ml). 25-78% of SER and RER GGT activities were extracted at this concentration. 4. A higher level of detergent (5 mg/ml) was necessary to release all GGT activities of SER and RER. Protein extraction was identical to GGT activities.  相似文献   

19.
It was shown that, among ionic and nonionic detergents tested, only Triton X-100 was able to stimulate the activity of rat liver phosphatidylserine decarboxylase, whereas other detergents were without effect or were inhibitory. The solubilization procedure of phosphatidylserine decarboxylase from mitochondrial membranes with Triton X-100 was elaborated. The dependence of the solubilized decarboxylase on the Triton X-100 to phosphatidylserine ratio and the inhibitory effect of Triton X-100 at its molar ratio to phospholipid higher than 5.6 was observed. No divalent cation requirement and no dependence of the ionic strength for the solubilized enzyme were observed. Kinetic parameters were determined.  相似文献   

20.
If the plasma membrane and its associated transport proteins are solely responsible for maintenance of the asymmetric solute distribution then disruption of the plasma membrane would quickly lead to the symmetric distribution of all unattached inorganic ions between the cell and the extracellular environment. To test this hypothesis fresh pig lenses were incubated in Hanks ’ balanced salt solution in either absence or presence of non-ionic detergents (0.2 % Triton X-100 or 0.2 % Brij 58). Both detergents caused permeabilization of every lens fiber cell as shown by electron microscopy. The flux kinetics of K+, Mg2 +, Na+, Ca2 +, water and protein out of and into the permeabilized lens fiber cells was measured. Triton X-100 caused a faster flux rate of all solutes than did Brij 58. The Triton X-100 induced flux of solutes and water was associated with a decrease in lens ATP. Incubation of untreated lenses in solutions of different osmotic pressures at 0 °C demonstrated that the major fraction of lens water was osmotically unresponsive. Thus the asymmetric distribution of solutes in lens fiber cells is dependent on an intact plasma membrane and on a co-operative ATP-dependent association between K+, Mg2 +, water and cytomatrix proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号