首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Narine AA  Watson JN  Bennet AJ 《Biochemistry》2006,45(30):9319-9326
The sialidase from Micromonospora viridifaciens has been found to catalyze the hydrolysis of aryl 2-thio-alpha-D-sialosides with remarkable efficiency: the first- and second-order rate constants, kcat and kcat/Km, for the enzyme-catalyzed hydrolysis of PNP-S-NeuAc are 196 +/- 5 s(-1) and (6.7 +/- 0.7) x 10(5) M(-1) s(-1), respectively. A reagent panel of eight aryl 2-thio-alpha-D-sialosides was synthesized and used to probe the mechanism for the M. viridifaciens sialidase-catalyzed hydrolysis reaction. In the case of the wild-type enzyme, the derived Br?nsted parameters (beta(lg)) on kcat and kcat/Km are -0.83 +/- 0.11 and -1.27 +/- 0.17 for substrates with thiophenoxide leaving groups of pKa values > or = 4.5. For the general-acid mutant, D92G, the derived beta(lg) value on kcat for the same set of leaving groups is -0.82 +/- 0.12. When the conjugate acid of the departing thiophenol was < or = 4.5, the derived Br?nsted slopes for both the wild-type and the D92G mutant sialidase were close to zero. In contrast, the nucleophilic mutant, Y370G, did not display a similar break in the Br?nsted plots, and the corresponding values for beta(lg), for the three most reactive aryl 2-thiosialosides, on kcat and kcat/Km are -0.76 +/- 0.28 and -0.84 +/- 0.04, respectively. Thus, for the Y370G enzyme glycosidic C-S bond cleavage is rate-determining for both kcat and kcat/Km, whereas, for both the wild-type and D92G mutant enzymes, the presented data are consistent with a change in rate-determining step from glycosidic C-S bond cleavage for substrates in which the pKa of the conjugate acid of the leaving group is > or = 4.5, to either deglycosylation (kcat) or a conformational change that occurs prior to C-S bond cleavage (kcat/Km) for the most activated leaving groups. Thus, the enzyme-catalyzed hydrolysis of 2-thiosialosides is strongly catalyzed by the nucleophilic tyrosine residue, yet the C-S bond cleavage does not require the conserved aspartic acid residue (D92) to act as a general-acid catalyst.  相似文献   

2.
The second-order rate constants (kcat/Km) for the beta-glucosidase-catalyzed hydrolysis of aryl beta-D-glucopyranosides show a bell-shaped dependence of pH. The pKas that characterize this dependence are 4.4 (delta Hion approximately equal to 0) and 6.7 (delta Hion approximately equal to 0). In D2O these pKas are increased by 0.5 (+/- 0.1) unit, but there is no solvent isotope effect on the pH-independent second-order rate constant. Nath and Rydon [Nath, R. L., & Rydon, H. N. (1954) Biochem. J. 57, 1-10] examined the kinetics of the beta-glucosidase-catalyzed hydrolysis of a series of substituted phenyl glucosides. We have extended this study to include glucosides with phenol leaving groups of pKa less than 7. Br?nsted plots for this extended series were nonlinear for both kcat/Km and kcat. Br?nsted coefficients for those compounds with leaving groups of pKa greater than 7 (for kcat/Km) or pKa greater than 8.5 (for kcat) were nearly equal to -1.0, indicating substantial negative charge buildup on the leaving group in the transition state. The nonlinearity indicates an intermediate in the reaction. This was confirmed by partitioning experiments in the presence of methanol as a competing glucose acceptor. A constant product ratio, [methyl glucoside]/[glucose], was found with aryl glucoside substrates varying over 16,000-fold in reactivity (V/K), indicative of a common intermediate. Viscosity variation (in sucrose-containing buffers) was used to probe the extent to which the beta-glucosidase reactions are diffusion-controlled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The catalytic mechanism for the enzymatic hydrolysis of a series of paraoxon analogues by the phosphotriesterase from Pseudomonas diminuta has been determined. The Br?nsted plots relating the pKa of the leaving group to the observed kinetic parameters, Vmax and V/Km, are both nonlinear. This observation is consistent with a change in the rate-limiting step from chemical to physical events as the pKa of the leaving group is decreased. This conclusion is confirmed by the effects of solvent viscosity on Vmax and V/Km for the same series of analogues. The data were fitted to the scheme E k1A in equilibrium k2 EA k3----EP k7----E'P k9----E + products where EA is the enzyme-substrate complex, EP is the enzyme-product complex, E'P is the enzyme-product complex after a viscosity-independent unimolecular reaction, and the values for k1, k2, k7, and k9 are 4.1 X 10(7) M-1 s-1, 2550 s-1, 3370 s-1, and 5940 s-1, respectively. The magnitude of the chemical step, represented by k3, is dependent on the pKa of the leaving group phenol as predicted by the Br?nsted equation (log k3 = beta pKa + C) where beta = -1.8 and the constant (C) = 17.7. The magnitude of beta indicates that the transition state for substrate hydrolysis is very product-like.  相似文献   

4.
A D Hall  A Williams 《Biochemistry》1986,25(17):4784-4790
Values of kcat and Km have been measured for the Escherichia coli alkaline phosphatase catalyzed hydrolysis of 18 aryl and 12 alkyl monophosphate esters at pH 8.00 and 25 degrees C. A Br?nsted plot of log (kcat/Km) (M-1 s-1) vs. the pK of the leaving hydroxyl group exhibits two regression lines: log (kcat/Km) = -0.19 (+/- 0.02) pKArOH + 8.14 (+/- 0.15) log (kcat/Km) = -0.19 (+/- 0.01) pKROH + 5.89 (+/- 0.17) Alkyl phosphates with aryl or large lipophilic side chains are not correlated by the above equations and occupy positions intermediate between the two lines. The observed change in effective charge on the leaving oxygen of the ester (-0.2) is very small, consistent with substantial electrophilic participation of the enzyme with this atom. Cyclohexylammonium ion is a noncompetitive inhibitor against 4-nitrophenyl phosphate substrate at pH 8.00, and neutral phenol is a competitive inhibitor (Ki = 82.6 mM); these data and the 100-fold larger reactivity of aryl over alkyl esters are consistent with the existence of a lipophilic binding site for the leaving group of the substrate. The absence of a major steric effect in kcat/Km for substituted aryl esters confirms that the leaving group in the enzyme--substrate complex points away from the surface of the enzyme. Arguments are advanced to exclude a dissociative mechanism (involving a metaphosphate ion) for the enzyme-catalyzed substitution at phosphorus.  相似文献   

5.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

6.
beta-d-Xylosidases (EC 3.2.1.37) are exo-type glycoside hydrolases that hydrolyze short xylooligosaccharides to xylose units. The enzymatic hydrolysis of the glycosidic bond involves two carboxylic acid residues, and their identification, together with the stereochemistry of the reaction, provides crucial information on the catalytic mechanism. Two catalytic mutants of a beta-xylosidase from Geobacillus stearothermophilus T-6 were subjected to detailed kinetic analysis to verify their role in catalysis. The activity of the E335G mutant decreased approximately 106-fold, and this activity was enhanced 103-fold in the presence of external nucleophiles such as formate and azide, resulting in a xylosyl-azide product with an opposite anomeric configuration. These results are consistent with Glu335 as the nucleophile in this retaining enzyme. The D495G mutant was subjected to detailed kinetic analysis using substrates bearing different leaving groups (pKa). The mutant exhibited 103-fold reduction in activity, and the Br?nsted plot of log(kcat) versus pKa revealed that deglycosylation is the rate-limiting step, indicating that this step was reduced by 103-fold. The rates of the glycosylation step, as reflected by the specificity constant (kcat/Km), were similar to those of the wild type enzyme for hydrolysis of substrates requiring little protonic assistance (low pKa) but decreased 102-fold for those that require strong acid catalysis (high pKa). Furthermore, the pH dependence profile of the mutant enzyme revealed that acid catalysis is absent. Finally, the presence of azide significantly enhanced the mutant activity accompanied with the generation of a xylosyl-azide product with retained anomeric configuration. These results are consistent with Asp495 acting as the acid-base in XynB2.  相似文献   

7.
The mechanism and substrate specificity of the phosphotriesterase from Pseudomonas diminuta have been examined. The enzyme hydrolyzes a large number of phosphotriester substrates in addition to paraoxon (diethyl p-nitrophenyl phosphate) and its thiophosphate analogue, parathion. The two ethyl groups in paraoxon can be changed to propyl and butyl groups, but the maximal velocity and Km values decrease substantially. The enzyme will not hydrolyze phosphomonoesters or -diesters. There is a linear correlation between enzymatic activity and the pKa of the phenolic leaving group for 16 paraoxon analogues. The beta value in the corresponding Br?nsted plot is -0.8. No effect on either Vmax or Vmax/Km is observed when sucrose is used to increase the relative solvent viscosity by 3-fold. These results are consistent with rate-limiting phosphorus-oxygen bond cleavage. A plot of log V versus pH for the hydrolysis of paraoxon shows one enzymatic group that must be unprotonated for activity with a pKa of 6.1. The deuterium isotope effect by D2O on Vmax and Vmax/Km is 2.4 and 1.2, respectively, and the proton inventory is linear, which indicates that only one proton is "in flight" during the transition state. The inhibition patterns by the products are consistent with a random kinetic mechanism.  相似文献   

8.
Neither kcat. nor kcat./Km for five aryl alpha-D-glucopyranosides correlates with aglycone pKa, and isotope effects, described according to the convention used by Cleland [(1982) CRC Crit. Rev. Biochem. 13, 385-428], of 18(V) = 1.002 +/- 0.008, alpha D(V) = 1.01 +/- 0.04 and alpha D(V/K) = 0.969 +/- 0.035 are observed for p-nitrophenyl, and one of beta D(V) = 1.02 +/- 0.04 for phenyl alpha-D-glucopyranoside; kcat. but not kcat./Km, correlates with aglycone pKa for five alpha-D-glucopyranosyl pyridinium ions with a Brønsted coefficient of -0.61 +/- 0.06, and isotope effects of alpha D(V) = 1.22 +/- 0.02, beta D(V) = 1.13 +/- 0.01 and alpha D(V/K) = 1.018 +/- 0.046 for the 4-bromoisoquinolinium, and alpha D(V) = 1.15 +/- 0.02 and beta D(V) = 1.085 +/- 0.011 for the pyridinium salts are observed. These data require that a non-covalent event, fast in the case of the N-glycosides but slow in the case of the O-glycosides, precedes bond-breaking, and that bond-breaking involves substantial charge development on the glycone and near-perpendicularity of the C2-H bond to the planar oxocarbonium ion system. A model meeting these requirements is that the non-covalent event is a conjoint change of protein and substrate conformation which puts the pyranose ring in the 2,5B conformation of the bond-breaking transition state. This model also explains the contrast between the powerful inhibition of the enzyme by deoxynojirimycin (Ki = 23 +/- 3 microM) and feeble inhibition by castanospermine [Saul, Chambers, Molyneux & Elbein (1983) Arch. Biochem. Biophys. 221, 593-597], but is directly contrary to the predictions of Deslongchamps'' ''Theory of Stereoelectronic Control'' [Deslongchamps (1975) Tetrahedron 31, 2463-2490; (1983) Stereoelectronic Effects in Organic Chemistry, p. 39, Pergamon Press, Oxford].  相似文献   

9.
Kinetic analysis of human serine/threonine protein phosphatase 2Calpha.   总被引:1,自引:0,他引:1  
The PPM family of Ser/Thr protein phosphatases have recently been shown to down-regulate the stress response pathways in eukaryotes. Within the stress pathway, key signaling kinases, which are activated by protein phosphorylation, have been proposed as the in vivo substrates of PP2C, the prototypical member of the PPM family. Although it is known that these phosphatases require metal cations for activity, the molecular details of these important reactions have not been established. Therefore, here we report a detailed biochemical study to elucidate the kinetic and chemical mechanism of PP2Calpha. Steady-state kinetic and product inhibition studies revealed that PP2Calpha employs an ordered sequential mechanism, where the metal cations bind before phosphorylated substrate, and phosphate is the last product to be released. The metal-dependent activity of PP2C (as reflected in kcat and kcat/Km), indicated that Fe2+ was 1000-fold better than Mg2+. The pH rate profiles revealed two ionizations critical for catalytic activity. An enzyme ionization with a pKa value of 7 must be unprotonated for catalysis, and an enzyme ionization with a pKa of 9 must be protonated for substrate binding. Br?nsted analysis of substrate leaving group pKa indicated that phosphomonoester hydrolysis is rate-limiting at pH 7. 0, but not at pH 8.5 where a common step independent of the nature of the substrate and alcohol product limits turnover (kcat). Rapid reaction kinetics between phosphomonoester and PP2C yielded exponential "bursts" of product formation, consistent with phosphate release being the slow catalytic step at pH 8.5. Dephosphorylation of synthetic phosphopeptides corresponding to several protein kinases revealed that PP2C displays a strong preference for diphosphorylated peptides in which the phosphorylated residues are in close proximity.  相似文献   

10.
Native 5-aminolevulinic acid dehydratase contains zinc ions, which are essential for the enzymatic activity. Replacement of zinc by cadmium yielded an active enzyme whose kinetic parameters (kkat and Km) are similar to those of the zinc enzyme in the neutral pH range. However, the pH profiles of kcat and Km were different due to different pKa values. Two groups both with pKa values of 6.5 in the free zinc enzyme, but with pKa values of 7.0 in the cadmium enzyme were calculated from plots of log (kcat/Km) versus pH. On the other hand, the enzyme-substrate complex is controlled by one acidic group (zinc pKa = 6.0, cadmium pKa = 6.4) and one basis group (zinc pKa = 8.2, cadmium pKa = 7.7) as calculated from plots of log kcat versus pH. The Arrhenius plots for kcat of the two enzymes show no significant difference, the free energies of activation are 77.1 kJ/mol for the zinc and 76.8 kJ/mol for the cadmium enzyme. From this and from previous work it is concluded that the metal ions are located near the active site and influence the ionisations of essential amino acid residues. From the pH profiles of the modifying reaction and inhibition by diethylpyrocarbonate a histidinyl residue is inferred as one of the ionisable groups of the active site.  相似文献   

11.
The role of hydrophobic and electronic effects on the kinetic constants kcat and Km for the papain hydrolysis of a series of 22 substituted N-benzoylglycine pyridyl esters was investigated. The series studied comprises a wide variety of substituents on the N-benzoyl ring, with about a 300,000-fold range in their hydrophobicities, and 2.1-fold range in their electronic Hammet constants (sigma). It was found that the variation in the log kcat and log 1/Km constants could be explained by the following quantitative-structure activity relationships (QSAR): log 1/Km = 0.40 pi 4 + 4.40 and log 1/kcat = 0.45 sigma + 0.18. The substituent constant, pi 4, is the hydrophobic parameter for the 4-N-benzoyl substituents. QSAR analysis of two smaller sets of glycine phenyl and methyl esters produced similar results. A clear separation of the substituent effects indicates that in the case of these particular esters, acylation appears to be the rate limiting catalytic step.  相似文献   

12.
Vocadlo DJ  Withers SG 《Biochemistry》2005,44(38):12809-12818
Beta-N-acetylglucosaminidases are commonly occurring enzymes involved in the degradation of polysaccharides and glycoconjugates containing N-acetylglucosamine residues. Such enzymes have been classified into glycoside hydrolase families 3 and 20 and are believed to follow distinct chemical mechanisms. Family 3 enzymes are thought to follow a standard retaining mechanism involving a covalent glycosyl enzyme intermediate while family 20 enzymes carry out a substrate-assisted mechanism involving the transient formation of an enzyme-sequestered oxazoline or oxazolinium ion intermediate. Detailed mechanistic analysis of representatives of these two families provides support for these mechanisms as well as detailed insights into transition state structure. Alpha-secondary deuterium kinetic isotope effects of kH/kD = 1.07 and 1.10 for Streptomyces plicatus beta-hexosaminidase (SpHex) and Vibrio furnisii beta-N-acetylglucosaminidase (ExoII) respectively indicate transition states with oxocarbenium ion character in each case. Br?nsted plots for hydrolysis of a series of aryl hexosaminides are quite different in the two cases. For SpHex a large degree of proton donation is suggested by the relatively low value of beta(lg) (-0.29) on kcat/Km, compared with a beta(lg) of -0.79 for ExoII. Most significantly the Taft plots derived from kinetic parameters for a series of p-nitrophenyl N-acyl glucosaminides bearing differing levels of fluorine substitution in the N-acyl group are completely different. A very strong dependence (slope = -1.29) is seen for SpHex, indicating direct nucleophilic participation by the acetamide, while essentially no dependence (0.07) is seen for ExoII, suggesting that the acetamide plays purely a binding role. Taken together these data provide unprecedented insight into enzymatic glycosyl transfer mechanisms wherein the structures of both the nucleophile and the leaving group are systematically varied.  相似文献   

13.
We have measured the pH dependence of kcat and kcat/Km for CO2 hydration catalyzed by both native Zn2+-and metallo-substituted Co2+-bovine carbonic anhydrase II in the absence of inhibitory ions. For the Zn2+-enzyme, the pKa values controlling kcat and kcat/Km profiles are similar, but for the Co2+-enzyme the values are about 0.6 pH units apart. Computer simulations of a metal-hydroxide mechanism of carbonic anhydrase suggest that the data for both native and Co2+-carbonic anhydrase can be accounted for by the same mechanism of action, if we postulate that the substitution of Co2+ for Zn2+ in the active site causes a separation of about 0.6 pH units in the pKa values of His-64 and the metal-bound water molecule. We have also measured the activation parameters for kcat and kcat/Km for Co2+-substituted carbonic anhydrase II-catalyzed CO2 hydration and have compared these values to those obtained previously for the native Zn2+-enzyme. For kcat and kcat/Km we obtain an enthalpy of activation of 4.4 +/- 0.6 and approximately 0 kcal mol-1, respectively. The corresponding entropies of activation are -18 +/- 2 and -27 +/- 2 cal mol-1 K-1.  相似文献   

14.
A kinetic study of hydrolytic catalysis by wheat bran carboxypeptidase (carboxypeptidase W) was carried out using 3-(2-furyl)acryloyl-acylated (Fua-) synthetic substrates. This enzyme showed high esterase activity in addition to the intrinsic carboxypeptidase activity. The optimum pH for the peptidase activity (kcat/Km) was at pH 3.3 and the kcat/Km value decreased with increasing pH with an apparent pKa of 4.50, while the esterase activity increased with pH up to pH 8 with an apparent pKa of 6.04. Optimum pH's for kcat for the peptidase and esterase reactions were also very different and their apparent pKa values were 3.80 and 6.15, respectively. From a measurement of the pressure dependences of kcat and Km, the activation volumes (delta V not equal to) and reaction volumes (delta V), respectively, were determined. delta V not equal to for kcat was -7 to -8 ml/mol for peptidase and -2 to -3 ml/mol for esterase. These results lead us to propose that the peptidase and esterase activities of carboxypeptidase W are different not in the rate-determining steps in a common reaction pathway, but in the binding modes and/or catalytic site(s).  相似文献   

15.
The phenolic group of active site residue Tyr-248 in carboxypeptidase A has a pKa value of 10.06, as determined from the pH dependence of its rate of nitration by tetranitromethane. The decrease in enzyme activity (kcat/Km) in alkaline solution, characterized by a pKa value of approximately 9.0 (for cobalt carboxypeptidase A), is associated with the protonation state of an imidazole ligand of the active-site metal ion, as indicated by a selective pH dependence of the 1H NMR spectrum of the enzyme. Inhibition of the cobalt-substituted enzyme by 2-(1-carboxy-2-phenylethyl)phenol and its 4,6-dichloro- and 4-phenylazo-derivatives confirms that the decrease in enzyme activity (kcat/Km) in acidic solution, characterized by a pKa value of 5.8, is due to the protonation state of a water molecule bound to the active-site metal ion in the absence of substrate. Changes in the coordination number of the active-site metal ion are seen in its visible absorption spectrum as a consequence of binding of the phenolic inhibitors. Conventional concepts regarding the mechanisms of the enzyme are brought into question.  相似文献   

16.
Reversible inhibitors of beta-glucosidase   总被引:3,自引:0,他引:3  
A variety of reversible inhibitors of sweet almond beta-glucosidase were examined. These included simple sugars and sugar derivatives, amines and phenols. With respect to the sugar inhibitors and, indeed, the various glycoside substrates, the enzyme has what can be considered a "relaxed specificity". No single substituent on glucose, for example, is essential for binding. Replacement of a hydroxyl group with an anionic substituent reduces the affinity while substitution with a cationic (amine) substituent enhances the affinity. Amines, in general, are good inhibitors, binding more tightly than the corresponding alcohols: pKiRNH3+ = 0.645pKiROH + 1.77 (n = 9, r = 0.97). The affinity of a series of 10 primary amines was found to be strongly influenced by substituent hydrophobicity: pKi = 0.52 pi + 1.32 (r = 0.95). The major binding determinant of the glycoside substrates is the aglycon moiety. Thus, the Ki values of phenols are similar in magnitude to the Ks values of the corresponding aryl beta-glucoside. The pH dependence for the inhibition by various phenols indicates that it is the un-ionized phenol which binds to the enzyme when an enzymic group of pKa = 6.8 (+/- 0.1) is protonated. The affinity of the phenol inhibitor is dependent on its basicity with a Br?nsted coefficient for binding of beta = -0.26 (n = 14, r = 0.98). The pH dependence of the binding of two particularly potent beta-glucosidase inhibitors was also examined. 1-Deoxynojirimycin (1,5-dideoxy-1,5-imino-D-glucitol) has a pH-corrected Ki = 6.5 microM, and D-glucono-1,5-lactam has a pH-corrected Ki = 29 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Variation of experimentally observed pKa values in pH-dependent kinetic studies using acetylcholinesterase (AcChE) is rationalized by proposal of two-hydronic-reactive states, EH and EH2, of the free AcChE molecule. Two kinetically influential ionizations with pKa 6.5 for the general acid-base catalyst, possibly the imidazole group of histidine, and a modulatory group with pKa 5.5 residing at the juxtaposal modulatory site, provided fundamental bases for the observed variation in pK(app) values. Appropriate equations applicable to the proposed kinetic model in conjunction with pKa values (pKI 5.5, pKII 6.5) and relative varied values of the pH-independent rate constants, k'cat/K'm and kcat/Km, of the reactive states were used to generate computer simulation error-free pH-rate profiles. A series of theoretical apparently simple sigmoidal pH-rate profiles with characterizing parameters pK(app) varying between 5.5-6.5 were obtained. Ionization of a modulatory group with pKa 5.5 alone modifies the reaction mechanism of AcChE, and binding of substrates and inhibitors at this site provides modulation of catalysis/binding at the active center. Analysis of the relative magnitudes of pH-independent rate constants for the two reactive states revealed that in terms of the overall catalysis, the EH state shows favorable reactivity towards the cationic reagents with reactivity 1.0, as compared to the EH2 state with reactivities 0.25-0.55. Neutral reagents, in general, make use of the EH2 state more than cationic reagents, with reactivities 1.0 for the EH state and 0.3-1.0 for the EH2 state. Further analysis showed that this discrimination between the two reactive states, by both types of reagents, occurs predominantly through the difference in binding constants K'm and Km. Relative binding of a given cationic reagent to the respective reactive states ranges from K'm = 1.8 X Km to 4.0 X Km, and from K'm = 1.0 X Km to 2.0 X Km for the neutral reagents.  相似文献   

18.
For bovine erythrocyte acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7), the Michaelis parameters Vmax., and Km for the natural substrate acetylcholine were estimated as a function of pH and sodium chloride concentration by the pH-stat method. A single dissociation constant for Na+ binding (K = 7 X 10(-3) M) suffices to explain the salt dependence of Vmax./Km and of Km as well as the pH dependence of Vmax./Km and Vmax., Km being pH independent. This finding provides evidence for a specific effect of Na+, presumably by binding at the anionic subsite of the active centre. Na+ binding causes a 50-fold decrease in kcat./Km as well as a decrease of one unit in the pKa of both kcat./Km and kcat.. The intrinsic pKa in the absence of salt at 25 degrees C is about 7.5. Comparison of the degree of fit of the data to the Debeye-Huckel equation, in accordance with an alternative general salt effect, as well as published data for sodium and potassium chlorides also favour a specific salt effect.  相似文献   

19.
1. N-Acetyl-L-phenylalanylglycine 4-nitroanilide and its D-enantiomer were synthesized and characterized and used as substrates with which to evaluate stereochemical selectivity in papain (EC 3.4.22.2)-catalysed hydrolysis. 2. Kinetic analysis at pH 6.0, I 0.1, 8.3% (v/v) NN-dimethylformamide and 25 degrees C by using initial-rate data with [S] much less than Km and weighted non-linear regression provided values of kcat./Km for the catalysed hydrolysis of both enantiomers as (kcat./Km)L = 2040 +/- 48 M-1.S-1 and (kcat./Km)D = 5.9 +/- 0.07 M-1.S-1. These data, taken together with individual values of kcat. and Km for the hydrolysis of the L-enantiomer (a) estimated in the present work as kcat. = 3.2 +/- 1.2 S-1 and Km = 1.5 +/- 0.6 mM and (b) reported by Lowe & Yuthavong [(1971) Biochem. J. 124, 107-115] for the reaction at pH 6.0 in 10% (v/v) NN-dimethylformamide and 35 degrees C, as kcat. = 1.3 +/- 0.2 S-1 and Km = 0.88 +/- 0.1 mM, suggest that (kcat./Km)L congruent to 2000 M-1.S-1 and thus that (kcat./Km)L/(kcat./Km)D congruent to 330.3. Model building indicates that both enantiomeric 4-nitroanilides can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the S2 subsite with preservation of mechanistically relevant hydrogen-bonding interactions and that the main difference is in the positioning of the beta-methylene group. 4. The dependence of P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry for reactions involving derivatives of N-acetylphenylalanine is discussed. The variation in the index of stereochemical selectivity (ratio of the appropriate kinetic or thermodynamic parameter for a given pair of enantiomeric ligands), from 330 for the overall acylation process of the catalytic act, through 40 and 31 for the reaction at electrophilic sulphur in 2-pyridyl disulphides respectively without and with assistance by (His-159)-Im(+)-H, to 5 for the formation of thiohemiacetal adducts by reaction at aldehydic carbon, is interpreted in terms of the extent to which conformational variation of the bound ligand in the catalytic-site region permits the binding mode of the -CH2-Ph group of the D-enantiomer to approach that of the L-enantiomer.  相似文献   

20.
The hydrolysis of 32 X-phenyl-N-methanesulfonyl glycinates by papain was investigated. It was found that the variation in the Michaelis constants could be rationalized by the following correlation equation: log 1/Km = 0.61 pi '3 + 0.46 MR4 + 0.55 sigma + 2.00 with a correlation coefficient of 0.945. In this expression, pi '3 is the hydrophobic constant for the more lipophilic of the two possible meta substituents, MR4 is the molar refractivity of 4-substituents, and sigma is the Hammett constant summed for all substituents. Using this equation, we designed, synthesized, and successfully predicted Km for a new congener intended to maximize binding (1/Km). The interactions involved in enzyme-substrate binding, as characterized by the correlation equation, are interpreted using a computer-constructed color three-dimensional-graphics molecular model of the enzyme active site. The nonenzymatic hydrolysis (both acid and basic) of phenyl hippurates yield rate constants which are well correlated by Hammett equations; however, log k for both acid and alkaline hydrolysis are not linearly related to log 1/Km or log kcat/Km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号