首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newly synthesized histones have been extracted from Rana pipiens oocytes or cleaving embryos previously injected with [3H]lysine or [3H]arginine. The radioactive proteins were fractionated by cation-exchange chromatography and electrophoresis on acid/urea or SDS-polyacrylamide gels; histones were identified by coelectrophoresis with authentic markers. From percentage total incorporation in the putative histones, and absolute rates of lysine or arginine incorporation, rates of histone synthesis were estimated. Rates of histone synthesis in two-cell embryos were at least 10-fold higher than in maturing oocytes. Between the two-cell and blastula stages, the rate increased an additional threefold, from about 1200 pg hr?1 per embryo to about 4500 pg hr?1 per embryo. While all histone classes are synthesized during cleavage, synthesis of the various classes is not coordinated; histones are not synthesized in the same relative proportions at which they are found in blastula chromatin. The synthesis of histone H4 in particular is barely detectable during cleavage. This, and other observations, suggested the existence of cytoplasmic histone pools. In approaching the possible existence of histone pools, the amount of H4 present in oocytes was determined. Oocytes contain about 74 ng of H4, an amount sufficient to allow development to the blastula stage. These data are compared to those reported by others on histone synthesis during cleavage in Xenopus.  相似文献   

2.
The histones present in mature oocytes and embryos of Urechis caupo and their pattern of synthesis during early development have been characterized. Acid-soluble proteins extracted from mature oocyte germinal vesicles and from embryonic nuclei were analyzed by two-dimensional polyacrylamide gel electrophoresis. Histones are accumulated in the mature oocytes in amounts sufficient to provide for the assembly of chromatin through the 32- to 64-cell stage of embryogenesis. Two H1 histones, which appear to be variants, were found. Germinal vesicles and cleavage-stage nuclei are enriched in H1M (maternal). During late cleavage a faster-migrating H1, H1E (embryonic), appears among the nuclear histones and, as embryogenesis continues, replaces H1M as the predominant H1. No new core histone variants are detected during early development. Examination of [3H]lysine-labeled histones from germinal vesicles and embryonic nuclei reveals stage-specific patterns of histone synthesis. H1M is the major H1 species synthesized in mature oocytes. After fertilization, a switch to the predominant synthesis of H1E occurs. Comparison of the [3H]lysine incorporated into H1E and core histones indicates that H1E synthesis is disproportionately high from midcleavage through the midblastula stage. By the gastrula stage, a balanced synthesis of H1E and each core histone is established. The results indicate that there is noncoordinate regulation of H1 and core histone synthesis during Urechis development.  相似文献   

3.
The synthesis of basic proteins has been studied in the oocytes, eggs and embryos of the South African clawed frog, Xenopus laevis. A group of newly synthesized proteins has been identified as histones by the following criteria: solubility properties; incorporation of [3H]lysine and [3H]arginine in the correct proportions, but lack of incorporation of [3H]tryptophan; co-cleotrophoresis with marker histones in various types of polyacrylamide gels, including a type run in two dimensions; peptide analysis of the arginine-rich fraction, F2A1. The four main histone fractions other than F1 were found to be synthesized at all stages of development. F1 histone synthesis was first detected at the late blastula stage.Rates of histone synthesis were estimated for the different stages of development and it was concluded that histone synthesis was not co-ordinated with DNA synthesis either temporally or quantitatively. Histone synthesis was unusual in the following major respects: histones were synthesized in oocytes, and yet in these cells DNA replication had not occurred for several months; histones were synthesized in activated or fertilized eggs at a rate far in excess (about 500 times) of the immediate requirements. We suggest that in order to provide enough histones for the late blastula embryo a store of histone is accumulated during the early cleavage stages and possibly during oogenesis.  相似文献   

4.
5.
We have examined the molecular mechanisms responsible for the shifts in histone protein phenotype during embryogenesis in the sea urchinStrongylocentrotus purpuratus. The H1, H2A, and H2B classes of histone synthesized at the earliest stages of cleavage are heterogeneous: These proteins are replaced at late embryogenesis by a different set of histone-like polypeptides, some of which are also heterogeneous. The H3 and H4 histones appear to be homogeneous classes and remain constant. We have isolated from both early and late embryos the individual messenger RNAs coding for each of the multiple protein subtypes. The RNAs were isolated by hybridization to cloned DNA segments coding for a single histone protein or by elution from polyacrylamide gels. Each RNA was then analyzed and identified by its mobility on polyacrylamide gels and by its template activity in the wheat germ cell-free protein synthesizing system. The mRNAs for each of the five early histone protein classes are heterogeneous in size and differ from the late stage templates. The late mRNAs consist of at least 11 separable types coding for the 5 classes of histones. Each of the 11 has been separated and identified. The late stage proteins were shown to be authentic histones since many of their templates hybridize with histone coding DNA. The early and late stage mRNAs are transcribed from different sets of histone genes since (1) late stage H1 and H2A mRNAs fail to hybridize to cloned early stage histone genes under ideal conditions for detecting homologous early stage hybrids, (2) late stage H2B, H3, and H4 RNA/DNA hybrids melt at 14, 11, and 11°C lower, respectively, than do homologous RNA/DNA hybrids, and (3) purified late stage mRNAs direct the synthesis of the variant histone proteins which are synthesized only during later stages. The time course of synthesis of the late stage mRNAs suggests that they appear many hours before the late histone proteins can be detected, possibly as early as fertilization. In addition, early mRNAs are synthesized in small quantities as late as 40 hr after fertilization, during gastrulation. Thus, the major modulations of histone gene expression are neither abrupt nor an absolute on-off switch, and may represent only a gradual and relative repression of early gene expression. Two histones are detected only transiently during early cleavage. The mRNA for one of them, a subtype of H2A, can be detected in the cytoplasm for as long as 40 hr after fertilization. However, template activity for the other, a subtype of H2B, can be detected only at the blastula stage. Thus, the histone genes represent a complex multigene family that is developmentally modulated.  相似文献   

6.
7.
8.
The synthesis and distribution of histone subfractions (variants) were investigated during early grain development and in mature tissues of wheat (Tritium aestivum L.). Histones were extracted from purified chromatin and separated by two-dimensional polyacrylamide gel electrophoresis. There were no detectable differences in the patterns of histone variants from immature grain (3–16 days after fertilization), from mature embryos, from coleoptiles and roots of 4-day-old, etiolated seedlings and from leaves of 10-day-old, light-grown seedlings. Wheat H2 histones are composed of families of closely related variants. H2A consists of three major variants, and H2B consists of two major and four minor variants. The synthesis of these variants during early grain formation was determined by calculating the specific activities of the [3H]lysinelabeled proteins synthesized between 3 and 10 days after fertilization. The rate of synthesis of the nucleosomal histones closely parallels the declining rate of cell division in developing grains. Our results indicate that all the recognized wheat histone variants are present in developing wheat grains from the earliest time investigated (3 days after fertilization) and persist with no detectable changes in relative quantities throughout grain development and in several mature tissues.  相似文献   

9.
Messenger RNA has been isolated from the postribosomal supernatant of Spisula solidissima eggs. This mRNA directs the synthesis of several proteins when added to the ascites or wheat germ cell free system. No histone except F1 is coded for by Spisula egg mRNA, in contrast to what has been reported previously for sea urchin egg mRNA. In sea urchin eggs histone mRNA is among the abundant species of maternal mRNA.Histones have been prepared from Spisula embryos at different development stages and histone synthesis followed by incubation with (14C)lysine. The analysis by electrophoresis on acrylamide gels indicates that the pattern of synthesis of histones changes during development and that a new histone F1 fraction is actively synthesized from the 32–64 cells stage. In earlier embryos a different F1 histone is synthesized and the mRNA for this protein may be the only histone mRNA present in eggs.  相似文献   

10.
Trypanosoma cruziis an ancient, parasitic eukaryote which does not undergo chromatin condensation during cell division. This behavior may be explained if one considers the strong amino acid sequence divergence ofTrypanosomahistones compared to higher eukaryotes. In the latter organisms histone synthesis is coupled to DNA replication. Considering the nonconserved amino acid sequence ofT. cruzihistones, as well as the absence of chromatin condensation in this organism, we have studied histone synthesis in relation to DNA replication in this parasite. We have found that core histones and a fraction of histone H1 are synthesized concomitantly to DNA replication. However, another fraction of histone H1 is constitutively synthesized.  相似文献   

11.
Cytochemical staining characteristics of nuclear histones during postfertilization maturation division and various early embryonic stages in Urechis have been studied. The transition of protamine-type protein to adult histones in the sperm nucleus is accomplished by 15 min after entrance into the egg cytoplasm. Newly synthesized egg proteins migrate into enlarging male and female pronuclei after this transition, followed by pronuclear DNA synthesis and fusion. The shift from protamine-type protein to adult histones, which occurs in the absence of RNA synthesis during the postfertilization maturation division of the egg, may be one of the processes involved in the normal structural reorganization of chromosomes. Such a reorganization is likely to be a prerequisite for chromosome replication and mitosis. No qualitative differences are detected in the stainability of histones of unfertilized eggs and embryos at the cleavage and later stages of development.  相似文献   

12.
Abstract. Striking developmental changes in histone and histone synthesis in sea urchin embryos were observed in three histone classes, H1, H2A and H2B. In each case there is a shift in histone synthesis from the early cleavage stage types to other types of histones at the morula stage; Two new forms appear after the blastula stage. In addition, multiple changes in histone types were found during gameto-genesis in the male and female gonads where specific histones, different from the embryonic histones, were observed.  相似文献   

13.
The messenger RNAs for five classes of histone proteins are shown by competitive RNA-DNA hybridization to be stored in the unfertilized egg of the sea urchin, Lytechinus pictus. The masked mRNAs for f2b, f2a2, f3 and f2al histones migrate in polyacrylamide slab gels with the same mobility as the histone mRNAs that are synthesized after fertilization and are found engaged in protein synthesis on polysomes. The masked maternal and embryonic mRNAs for histone f2a1 are identical in mobility when analyzed in a gel system capable of resolving differences estimated as small as 4–5 nucleotides in length. We conclude that these histone mRNAs synthesized during oogenesis and inactive prior to fertilization are not activated during embryogeny by alteration in their molecular size.  相似文献   

14.
Histone synthesis and deposition into specific classes of nuclei has been investigated in starved and conjugating Tetrahymena. During starvation and early stages of conjugation (between 0 and 5 hr after opposite mating types are mixed), micronuclei selectively lose preexisting micronuclear-specific histones α, β, γ, and H3F. Of these histones, only α appears to accumulate in micronuclear chromatin through active synthesis and deposition during the mating process. Curiously, α is not observed (by stain or label) in young macronuclear anlagen (4C, 10 hr of conjugation). Thus, young macronuclear anlagen are missing all of the histones which are known to be specific to micronuclei of vegetative cells. By 14–16 hr of conjugation, we observe active synthesis and deposition of macronuclear-specific histones, hv1, hv2, and H1, into new macronuclear anlagen (8C). Thus macronuclear differentiation seems well underway by this time of conjugation. It is also in this time period (14–16 hr) that we first detect significant amounts of micronuclear-specific H1-like polypeptides β and γ in micronuclear extracts. These polypeptides do not seem to be synthesized during this period, which suggests that β and γ are derived from a precursor molecule(s). Since these micronuclear-specific histones do not appear in micronuclear chromatin until after other micronuclei have been selected to differentiate as macronuclei, we suspect that micronuclear differentiation is also an important process which occurs in 10–16 hr mating cells. Our results also suggest that proteolytic processing of micronuclear H3S into H3F (which occurs in a cell cycle dependent fashion during vegetative growth) is not operative during most if not all of conjugation. Thus micronuclei of mating cells contain only H3S which also seems consistent with the fact that some micronuclei differentiate into new macronuclei (micronuclear H3S is indistinguishable from macronuclear H3). Interestingly, the only H3 synthesized and deposited into the former macronucleus of mating cells is the relatively minor macronuclear-specific H3-like variant, hv2. These results demonstrate that significant histone rearrangements occur during conjugation in Tetrahymena in a manner consistent with the fact that during conjugation some micronuclei eventually differentiate into new macronuclei. Our results suggest that selective synthesis and deposition of specific histones (and histone variants) plays an important role in the nuclear differentiation process in Tetrahymena. The disappearance of specific histones also raises the possibility that developmentally regulated proteolytic processing of specific histones plays an important (and previously unsuspected) role in this system.  相似文献   

15.
16.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   

17.
Embryonic sea urchin histone mRNA was injected into eggs and developing zygotes of Xenopus. The functional stability of the mRNA was monitored by separating newly synthesized sea urchin histones from those of Xenopus. Just as when injected into Xenopus oocytes, sea urchin H1, H2A, and H2B mRNA molecules have a functional half-life of about 3 hr in the developing embryo. This suggests that the endogenous Xenopus histone mRNA is also unstable and has a number of implications for the amount of histone mRNA that is stored in the oocyte and the time at which histone genes should become active in development. The injected mRNA is translated with little, if any, greater efficiency in the egg than in the oocyte. However, Xenopus histone synthesis increases about 20- to 50-fold during the transition from oocyte to egg. The injection experiments therefore suggest that this increase is brought about primarily by the mobilization of stored mRNA, rather than an increase in the efficiency of histone synthesis.  相似文献   

18.
Interspecific hybrids of the sea urchins Strongylocentrotus purpuratus (♀) and Lytechinus pictus (♂) were used to estimate the contributions of the maternal and paternal genomes to histone mRNA synthesis during early development. Radiolabeled histone mRNAs from the two sea urchin species were identified by hybridization to cloned histone genes from both S. purpuratus and L. pictus and shown to be electrophoretically distinguishable. The synthesis of maternal and paternal histone mRNA in these hybrid embryos is evident as early as the two-cell stage. By at least the 16-cell stage, both maternal and paternal histone mRNAs are associated with polysomes. The relative amounts of the maternal and paternal histone mRNAs synthesized by the zygote appear to be similar.  相似文献   

19.
Calf thymus histories comprising two fractions, one rich in lysine, the other having roughly equal amounts of lysine and arginine, Loligo testes histones rich in arginine, and salmine, are compared with respect to their amino acid compositions, and their staining properties when the proteins are fixed on filter paper. The three types of basic proteins; somatic, arginine-rich spermatid histones, and protamine can be distinguished on the following basis. Somatic and testicular histones stain with fast green or bromphenol blue under the same conditions used for specific staining of histones in tissue preparations. The former histones lose most or all of their stainability after deamination or acetylation. Staining of the arginine-rich testicular histones remains relatively unaffected by this treatment. Protamines do not stain with fast green after treatment with hot trichloracetic acid, but are stained by bromphenol blue or eosin after treatment with picric acid. These methods provide a means for the characterization of nuclear basic proteins in situ. Their application to the early developmental stages of Helix aspersa show the following: After fertilization the protamine of the sperm is lost, and is replaced by faintly basic histones which differ from adult histones in their inability to bind fast green, and from protamines, by both their inability to bind eosin, and their weakly positive reaction with bromphenol blue. These "cleavage" histones are found in the male and female pronuclei, the early polar body chromosomes, and the nuclei of the cleaving egg and morula stages. During gastrulation, the histone complement reverts to a type as yet indistinguishable from that of adult somatic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号