首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholera toxin inhibition of progesterone-induced meiosis of Xenopus laevis oocytes in vitro has been correlated with increased cAMP levels. Inhibition of germinal vesicle breakdown (Gvbd) and cAMP increase occurred after a lag period of 2 hr, when cholera toxin was injected, or 4--5 hr, when applied externally. The ability of the maturation-promoting factor (Mpf) to provoke Gvbd when injected into recipient oocytes was found to be dependent upon whether the oocytes had been exposed to cholera toxin alone or to toxin and progesterone. With the former, cAMP levels were elevated and Mpf activity was abolished, whereas with the latter, the increase in cAMP was less pronounced and Mpf activity was observed. Injection of cAMP or its 8-thio derivatives shortly before the appearance of progesterone-induced Mpf abolished Gvbd. If injected earlier or later, no inhibition was observed. In contrast, cholera toxin inhibited maturation even when added several hours before progesterone, suggesting a sustained accumulation of cAMP. No Gvbd occurred when 8-thio-methyl-cAMP was injected together with Mpf. These data suggest that cAMP is involved in the control of the formation/amplification and/or activity of Mpf-a result which may be of general significance in cell division mechanisms.  相似文献   

2.
The activity of ornithine decarboxylase (ornithine carboxylyase E.C. 4.1.1.17) was studied during meiotic maturation induced in vitro by progesterone in follicle cell-free oocytes. Enzyme activity increased 4–6 fold during maturation, preceding germinal vesicle breakdown. The increase in ornithine decarboxylase activity was inhibited by cholera toxin, an agent that blocks meiotic maturation and increases cAMP levels within the cell. It was also prevented by cycloheximide but not by actinomycin D. Treatment of oocytes with D,L-α-difluoromethyl-ornithine, an irreversible inhibitor of ornithine decarboxylase and of putrescine synthesis, effectively abolished enzyme activity without preventing germinal vesicle breakdown. These observations show that the progesterone-induced increase in ornithine decarboxylase activity is not required for completion of meiotic division of the oocyte.  相似文献   

3.
The incorporation of [35S]methionine into polypeptides during progesterone-induced meiotic maturation of Xenopus laevis oocytes was studied by two-dimensional polyacrylamide gel electrophoresis. Five modifications were consistently observed: two polypeptides of an approximate molecular weight of 150K daltons and pI 5 were new proteins, two represent increased incorporation and one was decreased incorporation. Cholera toxin inhibited the appearance of the modifications induced by progesterone. Actinomycin and enucleation did not significantly alter the modifications. These data indicate that a good correlation exists between the modifications in protein synthesis induced by progesterone and the resumption of meiotic cell division.  相似文献   

4.
O Mulner  F Megret  J E Alouf  R Ozon 《FEBS letters》1985,181(2):397-402
Progesterone triggers the first meiotic cell division of Xenopus oocyte and inhibits cAMP synthesis. The effect of pertussis toxin purified from Bordetella pertussis was tested on the maturation of Xenopus oocyte. The toxin did not inhibit progesterone-induced resumption of meiosis or the hormone-induced drop in cAMP level. This indicates that progesterone action is not mediated by the Ni subunit of the oocyte adenylate cyclase. Furthermore, pertussis toxin caused a reduction in the time course of maturation correlated with the precocious appearance of an alkali stable 47 kDa phosphoprotein, a marker of the maturation promoting factor (MPF) activity. Pertussis toxin effects mimicked those of 2-glycerophosphate suggesting that both agents act on the steady-state level of phosphorylation implicated in MPF activity.  相似文献   

5.
Guanyl nucleotide binding-proteins, or G-proteins, are ubiquitous molecules that are involved in cellular signal transduction mechanisms. Because a role has been established for cAMP in meiosis and G-proteins participate in cAMP-generating systems by stimulating or inhibiting adenylate cyclase, the present study was conducted to examine the possible involvement of G-proteins in the resumption of meiotic maturation. Cumulus cell-free mouse oocytes (denuded oocytes) were maintained in meiotic arrest in a transient and dose-dependent manner when microinjected with the nonhydrolyzable GTP analog, GTP gamma S. This effect was specific for GTP gamma S, because GppNHp, GTP, and ATP gamma S were without effect. Three compounds, known to interact with G-proteins, were tested for their ability to modulate meiotic maturation: pertussis toxin, cholera toxin, and aluminum fluoride (AlF4-). Pertussis toxin had little effect on maturation in either cumulus cell-enclosed oocytes or denuded oocytes when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP) or hypoxanthine. Cholera toxin stimulated germinal vesicle breakdown (GVB) in cumulus cell-enclosed oocytes during long-term culture, but its action was inhibitory in denuded oocytes. AlF4- stimulated GVB in both cumulus cell-enclosed oocytes and denuded oocytes when meiotic arrest was maintained with hypoxanthine but was much less effective in dbcAMP-arrested oocytes. In addition, AlF4- abrogated the inhibitory action of cholera toxin in denuded oocytes and also that of follicle-stimulating hormone (FSH) in cumulus cell-enclosed oocytes. Cholera toxin or FSH alone each stimulated the synthesis of cAMP in oocyte-cumulus cell complexes, whereas pertussis toxin or AlF4- alone were without effect. Both cholera toxin and AlF4- augmented the stimulatory action of FSH on cAMP. These data suggest the involvement of guanyl nucleotides and G-proteins in the regulation of GVB, although different G-proteins and mediators may be involved at the oocyte and cumulus cell levels. Cholera toxin most likely acts by ADP ribosylation of the alpha subunit of Gs and increased generation of cAMP, whereas AlF4- appears to act by antagonizing a cAMP-dependent step.  相似文献   

6.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

7.
GTP-gamma-S inhibits progesterone-induced maturation of Xenopus laevis oocytes and induces a rise in their cAMP levels. GTP-gamma-S does not inhibit MPF-induced maturation. Although GTP-gamma-S prevents the progesterone-induced increases in protein synthesis and phosphorylation, it has no effect on the basal rates of either. GTP-gamma-S also prevents the initial DAG drop induced by progesterone. GDP-beta-S effects are ambiguous, but it seems not to affect progesterone-induced maturation. These results suggest that although G-proteins are associated with the pathways affected by progesterone, the effects of progesterone are not mediated by a typical receptor/G-protein/effector interaction.  相似文献   

8.
Cholera toxin was used in an attempt to inhibit epidermal growth factor stimulated 3T3 cell division. Instead, cholera toxin alone at low concentrations (10(-10) M), was able to stimulate cell division and could augment EGF stimulated cell division. The mitogenic effect of cholera toxin can occur despite a dramatic increase in the intracellular levels of cAMP in 3T3 cells. Cholera toxin stimulated mitogenesis could not be mimicked by choleragenoid, the binding but inactive subunit of cholera toxin, or by other agents which elevate cAMP levels in 3T3 cells.  相似文献   

9.
Microinjection of antipain, an inhibitor of thiol and Ca2+-dependent proteases, in immature Xenopus oocytes inhibited meiotic maturation induced by progesterone, but not by transfer of cytoplasm taken from maturing oocytes. Oocytes could be released from antipain inhibition by increasing progesterone concentration. alpha-32P-ATP was microinjected to study adenylcyclase in ovo. As already reported, neosynthesis of cAMP was decreased following progesterone application. This decrease was not observed, or it was considerably reduced, in oocytes previously injected with antipain. In amphibian, full-grown ovarian oocytes are arrested at first meiotic prophase, and have a large nucleus known as the germinal vesicle. Progesterone induces the production of a cytoplasmic maturation-promoting factor (MPF), which itself triggers germinal vesicle breakdown (GVBD), and subsequent events of meiotic maturation (Masui and Markert, 1971; Gerhart et al., 1984). A considerable body of evidences support the view that release from prophase block is due to inactivation of a cAMP-dependent protein kinase (reviewed by Maller, 1983). On the other hand, progesterone has been shown to induce a transient decrease in cAMP level (Speaker and Butcher, 1977; Schorderet-Slatkine et al., 1982; Cicirelli et al., 1985), and this initial drop of cAMP, along with a number of studies indicating a decrease in adenylate cyclase activity (Mulner et al., 1979; Baltus et al., 1981; Sadler and Maller, 1981; Finidori-Lepicard et al., 1981; Jordana et al., 1981), provided key support to the theory that an early drop in cAMP led to the dephosphorylation of a hypothetical protein which initiates maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
One hour of exposure to cholera toxin is sufficient to elicit a significant delay in the initiation of DNA synthesis and cell division in lactogenic hormone-dependent Nb2-11C lymphoma cells. The inhibitory effect occurs already at very low concentrations of cholera toxin (5-50 fM), at which it is not accompanied by a detectable increase in intracellular cAMP, or ADP-ribosylation of the alpha subunit of Gs, the stimulatory guanine nucleotide binding protein of adenylate cyclase; IBMX, the phosphodiesterase inhibitor, acts synergistically to cholera toxin, indicating that a minute increase in cAMP may be sufficient for the inhibition. This indication is substantiated by the finding that dibutyryl cAMP also inhibits cell proliferation. Phorbol diester reverses partially the inhibitory activity of cholera toxin. It is most likely that this effect does not result from blocking the increase in cAMP, but rather from some subsequent, yet unidentified, events. The inhibitory effect of cholera toxin is not dependent on the concentration of the proliferation-stimulating lactogenic hormone and cannot be abolished or reduced by excess of the hormone. Cholera toxin also inhibits the autonomous proliferation of a lactogenic hormone-independent cell line (Nb2-SP); however, in this case the inhibition is not affected by TPA.  相似文献   

11.
Rat oocytes resume meiosis spontaneously in vitro within 3 h after their isolation from the ovarian follicles. We report here that the spontaneous maturation of isolated rat oocytes is preceded by a drop in intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP). Further experiments were carried out to examine the possible correlation between the meiotic status and cAMP levels within the oocyte. To challenge rat cumulus-free oocytes to generate cAMP, bypassing their own adenylate cyclase, a preparation of an invasive adenylate cyclase from Bordetella pertussis was used. We found a dose-dependent elevation of cAMP levels within these oocytes that corresponded to inhibition of their spontaneous maturation. Persistent inhibition of meiosis was obtained with the continuous presence of the enzymatic preparation, whereas its removal resulted in a transient inhibition associated with a drop in cAMP. We suggest that the presence of elevated cAMP levels in the oocyte is directly responsible for the maintenance of meiotic arrest.  相似文献   

12.
Microinjection of the activated ras oncogenic protein can induce the meiotic maturation of Xenopus laevis oocytes, a process that can also be triggered by progesterone or high concentrations of insulin. Cycloheximide and puromycin, well-known inhibitors of protein synthesis, block the maturation process induced by progesterone and insulin but do not affect the maturation caused by H-raslys12 protein microinjection. Theophylline, an inhibitor of cAMP phosphodiesterase that also affects oocyte protein synthesis, does cause a partial inhibition of ras protein-induced maturation. These findings indicate that ras protein acts on the oocyte maturation process at a point that is downstream of the protein synthesis requirement, a characteristic shared with the maturation promoting factor, an activity that appears in oocytes and mitotic cells at the onset of cell division.  相似文献   

13.
Ripe Xenopus oocytes in first meiotic prophase when incubated with progesterone in vitro progress synchronously in 3 to 5 h without interphase to second meiotic metaphase where they remain until fertilization or activation. Using highly purified preparations of regulatory and catalytic subunits of adenosine 3':5'-monophosphate-dependent protein kinase from muscle, this progesterone-stimulated cell division sequence was found to be inhibited by microinjection of the catalytic subunit and induced directly in the absence of progesterone after microinjection of regulatory subunit. Dose-response curves revealed that half-maximal effects of regulatory and catalytic subunits occurred at an internal concentration of approximately 0.1 muM. These results indicate that the catalytic subunit is necessary and sufficient to block progesterone-stimulated meiotic cell division. Other experiments revealed that the catalytic subunit was inhibitory only during the first hour after progesterone exposure, suggesting that initial steps in meiotic cell division are affected. Control experiments demonstrate that the muscle cAMP-dependent protein kinase subunits may interact with the endogenous oocyte protein kinase. The results support a model in which meiotic cell division is regulated by a phosphoprotein subject to control by cAMP-dependent protein kinase.  相似文献   

14.
In mammalian and amphibian oocytes, the meiotic arrest at the G2/M transition is dependent on cAMP regulation. Because genetic inactivation of a phosphodiesterase expressed in oocytes prevents reentry into the cell cycle, suggesting autonomous cAMP synthesis, we investigated the presence and properties of the G-protein-coupled receptors (GPCRs) in rodent oocytes. The pattern of expression was defined using three independent strategies, including microarray analysis of GV oocyte mRNAs, EST database scanning, and RT-PCR amplification with degenerated primers against transmembrane regions conserved in the GPCR superfamily. Clustering of the GPCR mRNAs from rat and mouse oocytes indicated the expression of the closely related Gpr3, Gpr12, and Edg3, which recognize sphingosine and its metabolites as ligands. Expression of these mRNAs was confirmed by RT-PCR with specific primers as well as by in situ hybridization. That these receptors are involved in the control of cAMP levels in oocytes was indicated by the finding that expression of the mRNA for Gpr3 and Gpr12 is downregulated in Pde3a-deficient oocytes, which have a chronic elevation of cAMP levels. Expression of GPR3 or GPR12 in Xenopus laevis oocytes prevented progesterone-induced meiotic maturation, whereas expression of FSHR had no effect. A block in spontaneous oocyte maturation was also induced when Gpr3 or Gpr12 mRNA was injected into mouse oocytes. Downregulation of GPR3 and GPR12 caused meiotic resumption in mouse and rat oocytes, respectively. However, ablation of the Gpr12 gene in the mouse did not cause a leaky meiotic arrest, suggesting compensation by Gpr3. Incubation of mouse oocytes with the GPR3/12 ligands SPC and S1P delayed spontaneous oocyte maturation. We propose that the cAMP levels required for maintaining meiotic arrest in mouse and rat oocytes are dependent on the expression of Gpr3 and/or Gpr12.  相似文献   

15.
Cholera toxin has been used as a tool to study the effects of cAMP on the activation of B cells but may have effects independent of its ability to elevate cAMP. We found five lines of evidence which suggested that cholera toxin suppressed mitogen-stimulated B cell activation through a cAMP-independent pathway. 1) Cholera toxin (1 microgram/ml) was consistently more suppressive than forskolin (100 microM) despite the induction of higher intracellular cAMP levels by forskolin. 2) Cholera toxin was more suppressive at 1 microgram/ml than at 0.1 microgram/ml despite equivalent elevations of cAMP. 3) Washing B cells following their incubation with cholera toxin reversed much of the inhibition without altering intracellular cAMP levels. 4) The A subunit of cholera toxin, which at high concentrations (10 micrograms/ml) induced levels of cAMP comparable to those induced by cholera toxin (1 and 0.1 microgram/ml), did not inhibit B cell activation. 5) cAMP derivatives at high concentrations were much less effective than was cholera toxin in suppressing B cell activation. Although the elevation of cAMP may cause a mild inhibition of B cell proliferation, we found that even a marked elevation of cAMP did not suppress B cell proliferation, unless the elevation was persistent. We did, however, observe that the degree of toxin inhibition more closely paralleled binding of the toxin to B cells than toxin stimulation of cAMP. This result raised the possibility that binding of cholera toxin to its ganglioside GM1 receptor mediated an inhibitory signal which suppressed B cell proliferation.  相似文献   

16.
In Xenopus laevis oocytes progesterone is able to inhibit directly the plasma membrane adenylate cyclase activity and induce reinitiation of meiotic maturation. To determine whether progesterone inhibition is mediated by the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, Ni, the effect of the Bordetella pertussis toxin (IAP) and limited proteolysis on progesterone action in oocytes was investigated. Treatment of oocyte membranes with islet activating protein (IAP) in the presence of [32P]NAD led to incorporation of radiolabel into a 41 000-dalton membrane protein. However, exposure of isolated oocytes to 100 ng/ml IAP for up to 24 h, or oocyte membranes with concentrations of toxin as high as 100 micrograms/ml, had no effect on either progesterone inhibition of adenylate cyclase or induction of maturation. Similarly, limited alpha-chymotrypsin proteolysis of oocyte membranes failed to modify progesterone-induced inhibition of adenylate cyclase. In contrast, inhibition of human platelet adenylate cyclase by epinephrine, acting via a GTP-dependent, alpha 2-adrenergic receptor-mediated pathway, is almost completely abolished by both IAP treatment and limited proteolysis of platelet membranes. These data indicate that unlike attenuation of platelet enzyme activity, the inhibition of adenylate cyclase in oocyte membranes by progesterone does not occur via a classical Ni-mediated pathway.  相似文献   

17.
Xenopus laevis oocytes have been incubated or microinjected with cholera and diphtheria holotoxins or their respective isolated fragments A and B. Effects on progesterone-induced maturation, protein synthesis and cAMP levels were observed. Xenopus laevis oocytes were highly susceptible to cholera toxin upon incubation as evidenced by the increase of cAMP (two-fold increase in cAMP with 0.1 nM cholera toxin) and the blockade of progesterone-induced maturation. When isolated cholera toxin fragments A or B were incubated with oocytes, no activity could be detected. However, microinjection of cholera toxin fragment A into oocyte was able to mimic the effects of incubated holotoxin. Microinjection of cholera toxin B fragment was only effective at very high concentrations, probably due to trace contaminations by the A fragment. On the other hand, Xenopus laevis oocytes were very resistant to diphtheria toxin action upon incubation, a result attributable to lack of specific membrane receptors since, after microinjection of diphtheria toxin A fragment into oocytes, inhibition of protein synthesis was demonstrated. By simultaneous microinjection of highly radioactive adenine-labelled NAD and diphtheria toxin fragment A into oocytes, radioactive ADP ribosylation of the elongation factor 2 (EF2) was observed. It is proposed that Xenopus laevis oocytes provide a new experimental approach for studying the mechanisms of action of microbial toxins.  相似文献   

18.
Dupré A  Jessus C  Ozon R  Haccard O 《The EMBO journal》2002,21(15):4026-4036
In Xenopus oocytes, the c-mos proto-oncogene product has been proposed to act downstream of progesterone to control the entry into meiosis I, the transition from meiosis I to meiosis II, which is characterized by the absence of S phase, and the metaphase II arrest seen prior to fertilization. Here, we report that inhibition of Mos synthesis by morpholino antisense oligonucleotides does not prevent the progesterone-induced initiation of Xenopus oocyte meiotic maturation, as previously thought. Mos-depleted oocytes complete meiosis I but fail to arrest at metaphase II, entering a series of embryonic-like cell cycles accompanied by oscillations of Cdc2 activity and DNA replication. We propose that the unique and conserved role of Mos is to prevent mitotic cell cycles of the female gamete until the fertilization in Xenopus, starfish and mouse oocytes.  相似文献   

19.
Cytoplasmic free calcium levels during progesterone-induced meiotic maturation in Xenopus laevis oocytes were measured using the photoprotein aequorin. The resting level of [Ca2+]i was 92.6 +/- 30 nM. No significant changes were observed after progesterone addition, although a large pulse of [Ca2+]i was observed upon activation of matured oocytes. These findings are discussed in terms of the role of calcium in maturation and it is concluded that calcium is not the second messenger for progesterone. This conclusion is further supported by the finding that 100 microM TMB-8, a blocker of intracellular calcium release, had no effect on progesterone-induced maturation.  相似文献   

20.
Fully grown oocytes of Xenopus laevis undergo resumption of the meiotic cycle when treated with the steroid hormone progesterone. Previous studies have shown that meiotic maturation results in profound downregulation of specific endogenous membrane proteins in oocytes. To determine whether the maturation impacts the functional properties of exogenously expressed membrane proteins, we used cut-open recordings from Xenopus oocytes expressing several types of Na(+) and K(+) channels. Treatment of oocytes with progesterone resulted in a downregulation of heterologously expressed Na(+) and K(+) channels without a change in the kinetics of the currents. The time course of progesterone-induced ion channel inhibition was concentration dependent. Complete elimination of Na(+) currents temporally coincided with development of germinal vesicle breakdown, while elimination of K(+) currents was delayed by approximately 2 h. Coexpression of human beta(1)-subunit with rat skeletal muscle alpha-subunit in Xenopus oocytes did not prevent progesterone-induced downregulation of Na(+) channels. Addition of 8-bromo-cAMP to oocytes or injection of heparin before progesterone treatment prevented the loss of expressed currents. Pharmacological studies suggest that the inhibitory effects of progesterone on expressed Na(+) and K(+) channels occur downstream of the activation of cdc2 kinase. The loss of channels is correlated with a reduction in Na(+) channel immunofluorescence, pointing to a disappearance of the ion channel-forming proteins from the surface membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号