首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autotrophic ammonia-oxidizing bacteria in a eutrophic freshwater lake were studied over a 12-month period. Numbers of ammonia oxidisers in the lakewater were small throughout the year, and tangential-flow concentration was required to obtain meaningful estimates of most probable numbers. Sediments from littoral and profundal sites supported comparatively large populations of these bacteria, and the nitrification potential was high, particularly in summer samples from the littoral sediment surface. In enrichment cultures, lakewater samples nitrified at low (0.67 mM) ammonium concentrations only whereas sediment samples exhibited nitrification at high (12.5 mM) ammonium concentrations also. Enrichments at low ammonium concentration did not nitrify when inoculated into high-ammonium medium, but the converse was not true. This suggests that the water column contains a population of ammonia oxidizers that is sensitive to high ammonium concentrations. The observation of nitrification at high ammonium concentration by isolates from some winter lakewater samples, identified as nitrosospiras by 16S rRNA probing, is consistent with the hypothesis that sediment ammonia oxidizers enter the water column at overturn. With only one exception, nested PCR amplification enabled the detection of Nitrosospira 16S rDNA in all samples, but Nitrosomonas (N. europaea-eutropha lineage) 16S rDNA was never obtained. However, the latter were part of the sediment and water column communities, because their 16S rRNA could be detected by specific oligonucleotide probing of enrichment cultures. Furthermore, a specific PCR amplification regime for the Nitrosomonas europaea ammonia monooxygenase gene (amoA) yielded positive results when applied directly to sediment and lakewater samples. Patterns of Nitrosospira and Nitrosomonas detection by 16S rRNA oligonucleotide probing of sediment enrichment cultures were complex, but lakewater enrichments at low ammonium concentration were positive for nitrosomonads and not nitrosospiras. Analysis of enrichment cultures has therefore provided evidence for the existence of subpopulations within the lake ammonia-oxidizing community distinguishable on the basis of ammonium tolerance and possibly showing a seasonal distribution between the sediment and water column.  相似文献   

2.
In this study, a lab-scale partial nitrifying sequencing batch reactor (SBR) was developed to investigate partial nitrification at ambient temperature (16–22 °C). Techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and fluorescence in situ hybridization (FISH) were utilized simultaneously to study microbial population dynamics. Partial nitrification was effectively achieved in response to shifts of influent ammonium concentrations. DGGE results showed that higher ammonia concentration referred to lower ammonia-oxidizing bacteria (AOB) diversity in the SBR. Phylogenetic analysis revealed that all the predominant AOB was affiliated with Nitrosomonas genus. FISH analysis illustrated AOB was the predominant nitrifying bacteria of microbial compositions when SBR achieved partial nitrification (PN) at ambient temperature.  相似文献   

3.
To reveal the succession procedure of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) community structure in sequencing biofilm batch reactor (SBBR), the molecular biological techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and real-time PCR were applied. DGGE showed that the structural diversity of the bacterial community increased during the biofilm formation period, and some kinds of populations had been highly preponderant consistently. The results of cloning and sequencing revealed that Nitrosomonas was the dominant species. The real-time PCR analysis indicated that the amount of the AOB increased significantly after the cultivation period, and the NOB gradually decreased. The AOB content on the 25th day was 17 times that of the 6th day. It also showed the biofilm formed successfully with accumulating nitrite and prepared to achieve the achievement of simultaneous nitrification and denitrification in SBBR. Furthermore, the ammonia-oxidizing rate was in correspondence with the NH4 +-N removal efficiency.  相似文献   

4.
《Ecological Indicators》2007,7(1):108-122
A chemical and microbiological investigation was performed to determine ecological impact in sediments below a new offshore mariculture operation on the southwest coast of Oahu, Hawaii. Sediment samples collected directly below the fish enclosures were compared with sediment collected 300 m upcurrent. Total organic carbon was 25–37% higher in the control compared with cage samples and ammonia was 30–46% higher in cage samples. Sulfate reducing bacteria (SRB) counts were 36% higher in cage sample sediments.Genomic 16S rDNA was PCR amplified from total DNA extracted from sediments and analyzed by denaturing gradient gel electrophoresis (DGGE). Similar gradient profiles for control and cage samples were observed. Cloned 16S rDNA libraries for species sampling and determination indicate similar and diverse bacterial communities. Bacteria belonging to the γ-Proteobacteria class were frequently represented and atypical or pathogenic bacterial species were not detected.A mathematical model developed for prediction of organic material deposition suggests that while currents will reduce fecal loading and feed deposition beneath a cage, there is expected to be sufficient nutrient addition to impact those sediments. Time series or statistical information on the current field beneath the fish cages are needed to apply the model for predicting locations of high deposition. This would contribute to the development of a comprehensive monitoring program that would sample multiple locations over time to generate an accurate and comprehensive depiction of the environmental impacts of this new and expanding commercial endeavor.  相似文献   

5.
《Process Biochemistry》2010,45(9):1543-1549
In this study laboratory scale biological activated carbon (BAC) columns were operated with water taken from a surface water reservoir in Istanbul. The aim was to evaluate the efficiency of nitrification in columns packed with two different granular activated carbon grades (open superstructure/chemically activated and closed superstructure/steam activated carbon) and to examine the probable beneficial effect of pre-ozonation. The occurrence and diversity of ammonia-oxidizing bacteria were investigated using 16S rDNA and amoA gene based molecular techniques. Nearly complete removal of NH4+-N was achieved by nitrification in both carbon types. The nitrification efficiency did not change in columns fed with ozonated water. However, the type of feed (either raw or ozonated) played a more important role than the type of GAC with respect to the dominance of nitrifier species in BAC columns. In biofilters ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were most closely related to Nitrosomonas spp. and Nitrospira spp. as determined by cloning and slot-blot analysis, respectively. The fraction of the AOB population in the biomass was high as detected by real-time PCR. The amoA/16S rDNA ratio varied from 28.7% to 2.1% along the depth of filters. In spite of similar removal efficiencies, BAC columns fed with ozonated water harbored different types of AOB than columns that were receiving raw water.  相似文献   

6.
7.
A combination of denaturing gradient gel electrophoresis (DGGE) and oligonucleotide probing was used to investigate the influence of soil pH on the compositions of natural populations of autotrophic β-subgroup proteobacterial ammonia oxidizers. PCR primers specific to this group were used to amplify 16S ribosomal DNA (rDNA) from soils maintained for 36 years at a range of pH values, and PCR products were analyzed by DGGE. Genus- and cluster-specific probes were designed to bind to sequences within the region amplified by these primers. A sequence specific to all β-subgroup ammonia oxidizers could not be identified, but probes specific for Nitrosospira clusters 1 to 4 and Nitrosomonas clusters 6 and 7 (J. R. Stephen, A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley, Appl. Environ. Microbiol. 62:4147–4154, 1996) were designed. Elution profiles of probes against target sequences and closely related nontarget sequences indicated a requirement for high-stringency hybridization conditions to distinguish between different clusters. DGGE banding patterns suggested the presence of Nitrosomonas cluster 6a and Nitrosospira clusters 2, 3, and 4 in all soil plots, but results were ambiguous because of overlapping banding patterns. Unambiguous band identification of the same clusters was achieved by combined DGGE and probing of blots with the cluster-specific radiolabelled probes. The relative intensities of hybridization signals provided information on the apparent selection of different Nitrosospira genotypes in samples of soil of different pHs. The signal from the Nitrosospira cluster 3 probe decreased significantly, relative to an internal control probe, with decreasing soil pH in the range of 6.6 to 3.9, while Nitrosospira cluster 2 hybridization signals increased with increasing soil acidity. Signals from Nitrosospira cluster 4 were greatest at pH 5.5, decreasing at lower and higher values, while Nitrosomonas cluster 6a signals did not vary significantly with pH. These findings are in agreement with a previous molecular study (J. R. Stephen, A. E. McCaig, Z. Smith, J. I. Prosser, and T. M. Embley, Appl. Environ. Microbiol 62:4147–4154, 1996) of the same sites, which demonstrated the presence of the same four clusters of ammonia oxidizers and indicated that selection might be occurring for clusters 2 and 3 at acid and neutral pHs, respectively. The two studies used different sets of PCR primers for amplification of 16S rDNA sequences from soil, and the similar findings suggest that PCR bias was unlikely to be a significant factor. The present study demonstrates the value of DGGE and probing for rapid analysis of natural soil communities of β-subgroup proteobacterial ammonia oxidizers, indicates significant pH-associated differences in Nitrosospira populations, and suggests that Nitrosospira cluster 2 may be of significance for ammonia-oxidizing activity in acid soils.  相似文献   

8.
Biological removal of ammonia was investigated using compost and sludge as packing materials in laboratory-scale biofilters. The aim of this study is to characterize the composition of ammonia-oxidizing bacteria (AOB) in two biofilters designed to remove ammonia. Experimental tests and measurements included analysis of removal efficiency and metabolic products. The inlet concentration of ammonia applied was 20–100 mg m−3. Removal efficiencies of BFC and BFS were in the range of 97–99% and 95–99%, respectively. Periodic analysis of the biofilter packing materials showed ammonia was removed from air stream by nitrification and by the improved absorption of NH3 in the resultant acidity. Nitrate was the dominant product of NH3 transformation. Changes in the composition of AOB were examined by using nested PCR, denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE bands. DGGE analysis of biofilter samples revealed that shifts in the community structure of AOB were observed in the experiment; however, the idle phase did not cause the structural shift of AOB. Phylogenetic analysis revealed the population of AOB showed Nitrosospira sp. remains the predominant population in BFC, while Nitrosomonas sp. is the predominant population in BFS.  相似文献   

9.
Abstract Databases containing information regarding presence and activity of microbial communities will be very useful for determination of the potential for intrinsic bioremediation in landfill leachate polluted aquifers. Simple analyses such as community-level physiological profiling (CLPP) and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA fragments yield large sets of data for inclusion into such databases. In this study we describe the development of a method for anaerobic CLPP, using commercially available Biolog plates. Incubation at the in situ temperature of the aquifer (10°C) for 28 days was optimal for obtaining a specific, reproducible physiological profile. Anaerobic incubation was essential for profiling anaerobic communities. The anaerobic cultivation-dependent CLPP method and cultivation-independent DGGE were applied to groundwater and sediment samples from the aquifer near the Coupépolder landfill in The Netherlands. A combination of computer-assisted CLPP and DGGE analysis of both groundwater and sediment samples yielded the best separating power for characterizing microbial communities in the aquifer. Communities in groundwater were significantly different from those in the corresponding sediment. Microbial communities present in subsamples from sediment cores usually were similar for the various sampling locations. Variation was observed for the heterogeneous sediment beneath the landfill. Both anaerobic CLPP and DGGE analysis clearly separated microbial communities from the polluted aquifer underneath the landfill from those in the less or not polluted aquifer downstream and upstream of the landfill. Received: 3 January 2000; Accepted: 21 March 2000; Online Publication: 28 August 2000  相似文献   

10.
Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw]−1 day−1 in June, increasing to 37.4 μmol N gdw−1 day−1 in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw−1 day−1 in June, increasing to 11.7 μmol N gdw−1 day−1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification.  相似文献   

11.
12.

Aims

It has been reported that root exudates of Sorghum bicolor can inhibit nitrification in a bioassay using Nitrosomonas, and methyl 3-(4-hydroxyphenyl) propionate (MHPP) was identified as one of the nitrification inhibiting compounds. Therefore, we have investigated the effects of this compound on nitrogen dynamic, potential nitrification activity and on soil microorganisms.

Methods

We conducted soil incubation experiments using synthetic MHPP to evaluate its effect on changes in inorganic soil nitrogen pools, on nitrification activity and on abundance of ammonia-oxidizing bacteria and archaea. Addition of MHPP at two concentrations equivalent to 70 and 350 μg C g?1 soil was compared to glucose as a carbon source and to the commercially available nitrification inhibitor dicyandiamide (DCD).

Results

Soil amended with the high dose of MHPP and with DCD showed reduced nitrate content and low nitrification activity after 3 and 7 days of incubation. This was mirrored by a 70 % reduction in potential nitrification activity compared to a nitrogen-only control. None of the incubation treatments affected non-target microbial counts as estimated by 16S rRNA gene copy numbers, however, the high dose of MHPP significantly reduced the abundance of ammonia-oxidizing bacteria and archaea.

Conclusions

These findings suggest that MHPP is capable of suppressing nitrification in soil, possibly by reducing the population size and activity of ammonia-oxidizing microorganisms.  相似文献   

13.
The bacterial community in a partial nitrification reactor was analyzed on the basis of 16S rRNA gene by cloning–sequencing method, and the percentages of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the activated sludge were quantified by three independent methods, namely, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP) and Double Monod modeling. The clone library results suggested that there were only a dominant AOB and a dominant NOB species in the reactor, belonging to Nitrosomonas genus and Nitrospira genus, respectively. The percentages of NOB in total bacterial community increased from almost 0% to 30% when dissolved oxygen (DO) levels were changed from 0.15 mg/L to 0.5 mg/L, coinciding with the accumulation and conversion of nitrite, while the percentages of AOB changed little in the two phases. The results confirmed the importance of low DO level for inhibiting NOB to achieve partial nitrification. Furthermore, the percentages of AOB and NOB in the total bacteria community were estimated based on the results of batch experiments using Double Monod model, and the results were comparable with those determined according to profiles of DGGE and T-RFLP.  相似文献   

14.
Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) play important roles in nitrification in various environments. They may also be key communities for ammonia oxidation in composting systems, although few studies have discussed their presence. We investigated the relative diversity and abundance of AOB and AOA using cloning procedures, denaturing gradient gel electrophoresis analysis, and real-time PCR during several stages in the process of cattle manure composting. Our results revealed that the AOB community structure changed during the process. At the high-temperature stage (>60°C), a member of the Nitrosomonas europaea/eutropha cluster dominated while the uncultured Nitrosomonas spp. cluster appeared after the temperature decreased. Additionally, our analysis indicated that AOA sequences, which were classified into a soil/sediment cluster, were present after the temperature decreased during the composting process. At these stages, the number of the archaeal amoA gene copies (3.2 or 3.9?×?107 copies per gram freeze-dried compost) was significantly higher than that of bacterial amoA gene copies (2.2–7.2?×?106 copies per gram freeze-dried compost). Our results suggest that both AOB and AOA are actively involved in nitrification of composting systems.  相似文献   

15.
Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 °C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.  相似文献   

16.
Cloned luciferase-encoding operons were transferred by conjugation to a natural isolate of the ammonia-oxidizing bacterial strain Nitrosomonas sp. RST41–3, thereby establishing conjugation as a tool for gene transfer into Nitrosomonas strains. Luminescence was dependent on the pH of the medium and the concentration of the substrate ammonium chloride. Moreover, the luminescence of the transconjugants was reduced immediately by micromolar concentrations of nitrapyrin and allylthiourea, which are specific inhibitors of nitrification. Our results indicate that luminescent Nitrosomonas strains may be useful as a probe to detect nitrification conditions in the natural environment as well as in sewage plants.  相似文献   

17.
Denaturing gradient gel electrophoresis (DGGE) of PCR amplicons of the ammonia monooxygenase gene (amoA) was developed and employed to investigate the diversity of ammonia-oxidizing bacteria (AOB) in four different habitats. The results were compared to DGGE of PCR-amplified partial 16S rDNA sequences made with primers specific for ammonia-oxidizing bacteria. Potential problems, such as primer degeneracy and multiple gene copies of the amoA gene, were investigated to evaluate and minimize their possible impact on the outcome of a DGGE analysis. amoA and 16S rDNA amplicons were cloned, and a number of clones screened by DGGE to determine the abundance of different motility types in the clone library. The abundance of clones was compared to the relative intensity of bands emerging in the band pattern produced by direct amplification of the genes from the environmental sample. Selected clones were sequenced to evaluate the specificity of the respective primers. The 16S rDNA primer pair, reported to be specific for ammonia-oxidizing bacteria (AOB), generated several sequences that were not related to the known Nitrosospira-Nitrosomonas group and, thus, not likely to be ammonia oxidizers. However, no false positives were found among the sequences retrieved with the modified amoA primers. Some phylogenetic information could be deduced from the position of amoA bands in DGGE gels. The Nitrosomonas-like sequences were found within a denaturant range from 30% to 46%, whereas the Nitrosospira-like sequences migrated to 50% to 60% denaturant. The majority of retrieved sequences from all four habitats with high ammonia loads were Nitrosomonas-like and only few Nitrosospira-like sequences were detected.  相似文献   

18.
Community structures of ammonia-oxidizing microorganisms were investigated using PCR primers designed to specifically target the ammonia monooxygenase α-subunit (amoA) gene in the sediment of Jinshan Lake. Relationships between the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), and physicochemical parameters were also explored. The AOA abundance decreased sharply from west to east; however, the AOB abundance changed slightly with AOB outnumbering AOA in two of the four sediment samples (JS), JS3 and JS4. The AOA abundance was significantly correlated with the NH4–N, NO3–N, and TP. No significant correlations were observed between the AOB abundance and environmental variables. AOB had a higher diversity and richness of amoA genes than AOA. Among the 76 archaeal amoA sequences retrieved, 57.89, 38.16, and 3.95 % fell within the Nitrosopumilus, Nitrososphaera, and Nitrososphaera sister clusters, respectively. The 130 bacterial amoA gene sequences obtained in this study were grouped with known AOB sequences in the Nitrosomonas and Nitrosospira genera, which occupied 72.31 % and 27.69 % of the AOB group, respectively. Compared to the other three sample sites, the AOA and AOB community compositions at JS4 showed a large difference. This work could enhance our understanding of the roles of ammonia-oxidizing microorganisms in freshwater lake environment.  相似文献   

19.
The characteristics of microbial mats within the waste stream from a seafood cannery were compared to a microbial community at a pristine site near a sandy beach at Puerto San Carlos, Baja California Sur, Mexico. Isolation of poly-beta-hydroxybutyrate (PHB)-producing bacteria, recognition of brightly refractile cytoplasmatic inclusions, lipophilic stains with Sudan Black and Nile Red, and chemical extraction of PHB were used as a culture-dependent strategy for the detection of PHB-producing bacteria. The culture-independent approach included denaturing gradient gel electrophoresis of phylotypes of 16S rRNA of microbial communities from environmental samples. Significant differences in community structure were found among the polluted and pristine sites. These differences were correlated with the physicochemical characteristics of the seawater column. At the polluted site, the seawater was rich in nutrients (ammonia, phosphates, and organic matter), compared to the pristine location. Partial sequencing of 16S rDNA of cultures of bacteria producing PHB included Bacillus and Staphylococcus at both sites; Paracoccus and Micrococcus were found only at the polluted site and Rhodococcus and Methylobacterium were found only at the pristine site. Bands of the sequences of 16S rDNA from both field samples in the denaturing gradient gel electrophoresis (DGGE) analyses affiliated closely only with bacterial sequences of cultures of Bacillus and Staphylococcus. High concentrations of organic and inorganic nutrients at the polluted site had a clear effect on the composition and diversity of the microbial community compared to the unpolluted site.  相似文献   

20.
Guanabara Bay is an eutrophic estuarine system located in a humid tropical region surrounded by the second largest metropolitan area of Brazil. This study explores the contrasting environmental chemistry and microbiological parameters that influence the archaeaplankton diversity in a pollution gradient in Guanabara Bay ecosystem. The environments sampled ranged from completely anoxic waters in a polluted inner channel to the adjacent, relatively pristine, coastal Atlantic Ocean. Partial archaeal 16S rDNA sequences in water samples were retrieved by polymerase chain reaction (PCR) and analyzed using denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing. Sequences were subjected to phylogenetic and diversity analyses. Community structure of the free-living archaeal assemblages was different from that of the particle-attached archaea according to DGGE. Gene libraries revealed that phylotype identification was consistent with environmental setting. Archaeal phylotypes found in polluted anoxic waters and in more pristine waters were closely related to organisms that have previously been found in these environments. However, inner bay archaea were related to organisms found in oil, industrial wastes, and sewage, implying that water pollution controls archaea communities in this system. The detection of a substantial number of uncultured phylotypes suggests that Guanabara Bay harbors a pool of novel archaeaplankton taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号