首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

3.
Rates of O-deethylation of 7-ethoxycoumarin by perfused livers from fasted, phenobarbital-treated rats were 3.7 mumol X g-1 X h-1. Approximately 50% of the product was conjugated. When rates of 7-ethoxycoumarin O-deethylation were varied by infusing different concentrations of substrate, a good correlation (r = 0.91) was found between rates of O-deethylation of 7-ethoxycoumarin and fluorescence of 7-hydroxycoumarin detected from the liver surface. Micro-light guides (tip diameter 170 microns) placed on periportal and pericentral regions on the liver surface were used to monitor the conversion of nonfluorescent 7-ethoxycoumarin to fluorescent 7-hydroxycoumarin. The O-deethylation of 7-ethoxycoumarin to 7-hydroxycoumarin increased fluorescence 64% and 28% in pericentral and periportal regions of the liver lobule, respectively. Rates of 7-ethoxycoumarin O-deethylation estimated from these increases in fluorescence were 5.2 mumol X g-1 X h-1 in pericentral and 2.2 mumol X g-1 X h-1 in periportal regions of the liver. During mixed-function oxidation of 7-ethoxycoumarin, the oxidation:reduction state of NADP(H) was similar in both regions of the liver lobule. Xylitol (2 mM) decreased the NADP+/NADPH ratio and stimulated rates of drug metabolism in both regions of the liver lobule. This indicates that conditions exist where the supply of NADPH is an important rate-determining factor for 7-ethoxycoumarin metabolism in both periportal and pericentral regions of the liver lobule.  相似文献   

4.
The effect of glucagon on gluconeogenesis was measured in periportal and pericentral regions of the liver lobule by monitoring changes in rates of O2 uptake on the surface of the perfused liver with miniature O2 electrodes after infusion of lactate. When lactate (2 mM) was infused into livers from starved rats perfused in the anterograde direction, O2 uptake was increased 2.5-fold more in periportal than in pericentral regions, reflecting increased energy demands for glucose synthesis. Under these conditions, glucagon infusion in the presence of lactate increased O2 uptake exclusively in periportal regions of the liver lobule. Thus, when perfusion is in the physiological anterograde direction, the metabolic actions of glucagon predominate in periportal regions of the liver lobule under gluconeogenic conditions in the starved state. When livers were perfused in the retrograde direction, however, glucagon stimulated O2 uptake exclusively in pericentral regions. Thus glucagon only stimulates gluconeogenesis in 'upstream' regions of the liver lobule irrespective of the direction of flow.  相似文献   

5.
A method has been devised to quantitate rates of ketogenesis (acetoacetate + beta-hydroxybutyrate production) in discrete regions of the liver lobule based on changes in NADH fluorescence. In perfused livers from fasted rats, ketogenesis was inhibited nearly completely with either 2-bromoctanoate (600 microM) or 2-tetradecylglycidic acid (25 microM). During inhibition of ketogenesis, a linear relationship (r = 0.90) was observed between decreases in NADH fluorescence detected from the liver surface and decreases in ketone body production. NADH fluorescence was monitored subsequently from individual regions of the liver lobule by placing microlight guides on periportal and pericentral regions of the liver lobule visible on the liver surface. Rates of ketogenesis in sublobular regions were calculated from regional decreases in NADH fluorescence and changes in the rate of ketone body formation by the whole liver during infusion of inhibitors. In the presence of bromoctanoate, ketogenesis was reduced 80% and local rates of ketogenesis were decreased 31 +/- 4 mumol/g/h in periportal areas and 28 +/- 3 mumol/g/h in pericentral regions. Similar results were observed with tetradecylglycidic acid. Therefore, it was concluded that submaximal rates of ketogenesis from endogenous, mainly long-chain fatty acids are nearly equal in periportal and pericentral regions of the liver lobule in liver from fasted rats. Rates of ketogenesis and NADH fluorescence were strongly correlated during fatty acid infusion. Infusion of 250 microM oleate increased NADH fluorescence maximally by 8 +/- 1% over basal values in periportal regions and 17 +/- 4% in pericentral areas. Local rates of ketogenesis, calculated from these changes in fluorescence, increased 35 +/- 6 mumol/g/h in periportal areas and 55 +/- 5 mumol/g/h in pericentral regions. Thus, oleate stimulated ketogenesis nearly 60% more in pericentral than in periportal regions of the liver lobule.  相似文献   

6.
A simple method which avoids the use of perfusion with calcium free buffer, hydrolytic enzymes and detergents has been developed to obtain fresh hepatocytes from periportal and pericentral regions of the liver lobule. Cylindrical plugs (200 x 500 microns) of periportal and pericentral areas of the rat liver lobule weighing about 1 mg were collected with a micropunch from fresh or perfused liver. Ninety percent of cells were intact as assessed from trypan blue staining. Glutamine synthetase activity was detected predominantly (ca. 85%) in plugs isolated from pericentral regions indicating that this method allows selective harvesting of pure sublobular zones of the liver lobule. Rates of oxygen uptake measured at 25 degrees C by plugs from livers perfused in the anterograde direction were 56 +/- 5 and 33 +/- 7 mumol/g/h by periportal and pericentral plugs, respectively, values similar to data obtained from the intact organ. This method provides new opportunities to study the regulation of basic metabolic processes in cells from sublobular areas under nearly physiological conditions.  相似文献   

7.
The effect of starvation and glucose addition on glucuronidation was assessed in sublobular regions of the lobule in perfused livers from phenobarbital-treated rats. Fibre-optic micro-light guides were placed on periportal and pericentral areas on the surface of livers to monitor the fluorescence (excitation 366 nm, emission 450 nm) of free 7-hydroxycoumarin from the tissue surface. After infusion of 7-hydroxycoumarin (80 microM) under normoxic conditions, steady-state increases in fluorescence were reached in 6-8 min in both regions. Subsequently, the formation of non-fluorescent 7-hydroxycoumarin glucuronide was inhibited completely by perfusion with N2-saturated perfusate containing 20 mM-ethanol. The difference in fluorescence between anoxic and normoxic perfusions was due to glucuronidation under these conditions. In livers from fed rats, rates of glucuronidation in periportal and pericentral regions of the liver lobule were 8 and 19 mumol/h per g, respectively. In contrast, rates of glucuronidation were 3 and 9 mumol/h per g, respectively, in periportal and pericentral regions of livers from starved rats. Infusion of glucose (20 mM) had no effect on rates of glucuronidation in livers from fed rats; however, glucose increased rates of glucuronidation rapidly (half-time, t0.5 = 1.5 min) in periportal and pericentral regions to 7 and 17 mumol/h per g, respectively in livers from starved rats. These results indicate that the rapid synthesis of the cofactor UDP-glucuronic acid derived from glucose is an important rate-determinant for glucuronidation of 7-hydroxycoumarin in both periportal and pericentral regions of livers from starved rats.  相似文献   

8.
In unstressed, normoglycaemic fetal lambs, the liver produces little glucose, and gluconeogenesis is insignificant. Indirect measurements have suggested that the fetus may produce glucose endogenously during hypoglycaemia induced by prolonged maternal starvation. In eight fetal lambs we directly measured total and radiolabelled substrate concentration differences across the liver to determine whether the fetal liver produces glucose after four days of fasting-induced hypoglycaemia. Simultaneously we measured umbilical glucose uptake and fetal glucose utilization. Glucose concentrations in ewes (1.78 +/- 0.44 mmol.-1) and fetuses (0.61 +/- 0.17 mmol.l-1) were decreased. Fetal glucose utilization rate (21.7 +/- 8.9 mumol.min-1.kg-1) was not significantly different from umbilical glucose uptake (17.2 +/- 8.9 mumol.min-1.kg-1). Hepatic glucose production (8.9 +/- 17.2 mumol.min-1.100 g-1) and gluconeogenesis (6.1 +/- 4.4 mumol.min-1.100 g-1) were present, but could account for only 13% and 8% of fetal glucose requirements, respectively. To determine whether glucose output by the fetal liver was limited by substrate availability, we infused lactate, acetate, and acetone into the umbilical veins of four fasted animals, increasing hepatic substrate delivery. Hepatic glucose output did not increase during infusion of gluconeogenic substrates, indicating that substrate availability did not limit gluconeogenesis. We conclude that the gluconeogenic pathway is intact in late-gestation fetal lambs and that the fetal liver is capable of gluconeogenesis. However, the primary change in fetal metabolism during maternal starvation is the reduction in fetal glucose utilization, obviating the need for substantial hepatic glucose production. The factors stimulating this modest increase in fetal hepatic glucose production remain to be elucidated.  相似文献   

9.
Periportal and pericentral regions of the liver lobule were isolated from perfused rat liver using a micropunch and incubated in Krebs-Henseleit buffer (pH 7.6) containing 2% poly(ethylene glycol) in Eagle's basal medium, PMSF (50 micrograms/ml) and leupeptin (20 micrograms/ml) for 2 h at 25 degrees C under and O2/CO2 (95:5%) gas phase. Maximal rates of urea production from ammonium chloride were 96.4 +/- 8.7 and 32.8 +/- 5.4 mumol/g per h at 800 and 200 microM O2. Thus, urea synthesis was 2-3-times greater at high than low O2 tension in plugs from periportal and pericentral regions of the liver lobule.  相似文献   

10.
Rat lung glucose metabolism after 24 h of exposure to 100% oxygen   总被引:1,自引:0,他引:1  
Previous studies with lung homogenates and isolated cells have suggested oxygen cell injury results from the inhibition of key enzymes involved in both cytosolic and mitochondrial energy generation. In this study, the extent and pattern of metabolism of D-[U-14C, 5-3H]glucose was examined in perfused lungs isolated from rats before and after 24 h of in vivo exposure to 100% O2. Lung ATP levels after O2 exposure were maintained by a 53% increase in glucose utilization from an unexposed control value of 18.0 +/- 3.2 to 27.5 +/- 3.0 mumol 3H2O.h-1.g dry wt-1, accounted for by an enhanced rate of lactate plus pyruvate production from 15.7 +/- 2.0 to 32.7 +/- 4.1 mumol.h-1.g dry wt-1 with no alteration in lactate-to-pyruvate ratio. CO2 production was unaltered from a control rate of 27.5 +/- 4.0 14CO2 mumol.h-1.g dry wt-1. Maximal rates of glucose metabolism were determined by perfusion with 0.8 mM dinitrophenol, giving for air-exposed lungs a rate of 53.5 +/- 5.0 mumol 3H2O.h-1.g dry wt-1 and increased lactate plus pyruvate and 14CO2 production rates of 46.5 +/- 6.5 and 128.3 +/- 19.6 mumol.h-1.g dry wt-1, respectively. Although this maximal rate of glucose utilization was unaltered in oxygen-exposed lungs, lactate plus pyruvate production was further increased to 80.0 +/- 9.1 mumol.h-1.g dry wt-1 with a concomitant decrease in the dinitrophenol-induced rate of 14CO2 production to 81.5 +/- 9.2 mumol.h-1.g dry wt-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

12.
The metabolism of fructose was investigated in the bivascularly and hemoglobin-free perfused rat liver. Anterograde and retrograde perfusions were performed. In anterograde perfusion, fructose was infused at identical rates (19 mumols min-1 g-1) via the portal vein (all liver cells) or the hepatic artery (predominantly perivenous cells); in retrograde perfusion fructose was infused via the hepatic vein (all liver cells) or the hepatic artery (only periportal cells). The cellular water spaces accessible via the hepatic artery were measured by means of the multiple-indicator dilution technique. The following results were obtained. (i) Fructose was metabolized to glucose, lactate and pyruvate even when this substrate was infused via the hepatic artery in retrograde perfusion; oxygen consumption was also increased. (ii) When referred to the water spaces accessible to fructose via the hepatic artery in each perfusion mode, the rate of glycolysis was 0.99 +/- 0.14 mumols min-1 ml-1 in the retrograde mode; and, 2.05 +/- 0.19 mumols min-1 ml-1 in the anterograde mode (P = 0.002). (iii) The extra oxygen uptake due to fructose infusion via the hepatic artery was 1.09 +/- 0.16 mumols min-1 ml-1 in the retrograde mode; and, 0.51 +/- 0.08 mumols min-1 ml-1 in the anterograde mode (P = 0.005). (iv) Glucose production from fructose via the hepatic artery was 2.18 +/- 0.18 mumols min-1 ml-1 in the retrograde mode; and, 1.83 +/- 0.16 mumols min-1 ml-1 in the anterograde mode (P = 0.18). (v) Glucose production and extra oxygen uptake due to fructose infusion did not correlate by a single factor in all perfusion modes. It was concluded that: (a) rates of glycolysis are lower in the periportal area, confirming previous views; (b) extra oxygen uptake due to fructose infusion is higher in the periportal area; (c) a predominance of glucose production in the periportal area could not be demonstrated; and (d) extra oxygen uptake due to fructose infusion is not a precise indicator for glucose synthesis.  相似文献   

13.
Exercise training reduces the muscle insulin resistance of the obese Zucker rat. The purpose of the present study was to determine whether the magnitude of this training response is exercise intensity specific. Obese Zucker rats were randomly divided into sedentary (SED), low-intensity (LI), and high-intensity (HI) exercise groups. For the LI rats, exercise training consisted of running on a rodent treadmill at 18 m/min up an 8% grade for 90 min. Rats in the HI group ran at 24 m/min up an 8% grade for four 17-min bouts with 3 min between bouts. Both exercise groups performed the same amount of work and trained 5 days/wk for 7 wk. To evaluate muscle insulin resistance, rat hindlimbs were perfused for 30 min with perfusate containing 6 mM glucose (0.15 mu Ci of D-[14C(U)] glucose/ml) and either a maximal (10.0 mU/ml) or a submaximal (0.50 mU/ml) insulin concentration. Perfusions were performed 48-56 h after the last exercise bout and a 12-h fast. In the presence of 0.5 mU/ml insulin, the rate of muscle glucose uptake was found to be significantly faster for the HI (9.56 +/- 0.66 mumol.h-1.g-1) than for the LI (7.72 +/- 0.65 mumol.h-1.g-1) and SED (6.64 +/- 0.44 mumol.h-1.g-1) rats. The difference in glucose uptake between the LI and SED rats was not significant. In the presence of 10.0 mU/ml insulin, the rate of glucose uptake was significantly faster for the HI (16.43 +/- 1.02 mumol.h-1.g-1) than for the LI rats (13.76 +/- 0.84 mumol.h-1.g-1) and significantly faster for the LI than for the SED rats (11.02 +/- 0.35 mumol.h-1.g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

15.
Perinatal onset of hepatic gluconeogenesis in the lamb   总被引:2,自引:0,他引:2  
Hepatic gluconeogenesis does not occur in the unstressed fetal sheep. After birth, in addition to glycogenolysis, the newborn lamb must eventually initiate gluconeogenesis to maintain glucose homeostasis. The regulation and time course of this transition have not been defined. We studied six animals in an acute preparation before and after delivery to determine hepatic lactate and glucose uptake, hepatic gluconeogenesis from lactate, and plasma catecholamine and cortisol concentrations. After a priming dose, continuous infusion of [14C]lactate provided tracer substrate for calculations of gluconeogenesis in the fetus and then for ten hours after delivery in the newborn lamb. The radionuclide-labelled microsphere method was used to measure hepatic blood flow. Appreciable gluconeogenesis was not present during the fetal period. Following delivery, the newborn lambs began to produce significant quantities of glucose from lactate at 6 h of age (1.37 +/- 0.84 mg.min-1.100 g-1 min-1 x 100 g-1 liver), when gluconeogenesis from lactate accounted for 22% of hepatic glucose output. Despite the onset of gluconeogenesis, postnatal lambs had blood glucose concentrations that remained less than fetal levels of 23.4 +/- 12.1 mg/dl for the duration of the 10-h study. Plasma norepinephrine concentration was 1380 +/- 1145 pg/ml in the fetus and fell by 2 h after birth. Plasma epinephrine concentrations were highest at 15 min after birth (205 +/- 262 pg/ml), but remained quite low for the remainder of the study. Plasma cortisol concentrations did not vary over the course of study, ranging from 40 to 50 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In perfused livers from fed rats, rates of glucose production (glycogenolysis) were 133 +/- 12 mumol/g/hr. Infusion of 2 microM verapamil into these livers decreased the rates of glucose production significantly to 97 +/- 15 mumol/g/hr within 10 min. Conversely, rates of production of lactate plus pyruvate (glycolysis) of 64 +/- 6 mumol/g/hr were not significantly altered by verapamil (60 +/- 3 mumol/g/hr). When 50 microM verapamil was infused, however, rates of both glycogenolysis and glycolysis were diminished to 56 +/- 11 and 43 +/- 5 mumol/g/hr, respectively. In perfused livers from fasted rats, infusion of 20 mM fructose increased the rates of production of glucose (gluconeogenesis) significantly from 11 +/- 7 to 121 +/- 17 mumol/g/hr. These rates reached 138 +/- 7 mumol/g/hr upon the simultaneous infusion of verapamil (2 microM). In these livers, fructose also increased rates of production of lactate from 6 +/- 2 to 132 +/- 11 mumol/g/hr, which were further increased to 143 +/- 8 mumol/g/hr when 2 microM verapamil was infused. The results show that calcium-dependent processes involved in hepatic carbohydrate metabolism respond differently to the calcium channel blocker verapamil. Low concentrations of verapamil inhibited glycogenolysis significantly while having no effect on either glycolysis or gluconeogenesis. These data suggest that these two processes have different sensitivities to changes in intracellular calcium concentrations and/or different sources of regulatory calcium.  相似文献   

17.
Cortisol induces perinatal hepatic gluconeogenesis in the lamb.   总被引:1,自引:0,他引:1  
To examine the influence of a prenatal increase in plasma cortisol concentration on perinatal initiation of hepatic gluconeogenesis, we infused cortisol into seven fetal sheep at 137-140 days gestation. 14C-Lactate provided tracer substrate for estimation of gluconeogenesis. We measured hepatic blood flow using radionuclide-labeled microspheres. After delivery, fetal arterial blood glucose concentration (1.33 +/- 0.4 mmol/l) increased transiently, but returned to fetal levels within 1 h after delivery. Substantial hepatic gluconeogenesis was induced in the fetus after cortisol infusion, averaging 23.4 +/- 12.2 mumol/min/100 g liver (7.8 +/- 4.4 mumol/min/kg fetal weight). Fetal hepatic glucose output was 44.4 +/- 17.7 mumol/min/100 g liver. Hepatic glucose output did not change after delivery; estimated gluconeogenesis decreased immediately, then increased by 6 h after delivery. Lactate supply to the liver fell substantially, from 1.1 +/- 0.4 mmol/min/100 g in the fetus to 0.24 +/- 0.09 at 1 h after delivery. Lactate flux across the liver decreased from 75.3 +/- 23 mumol/min/100 g in the fetus to 20.2 +/- 15.7 at 1 h after delivery. Hepatic lactate flux was significantly related to gluconeogenesis (r = 0.734, P = 0.0001). We conclude that cortisol induces substantial hepatic gluconeogenesis in fetal sheep near term. After delivery, there appears to be a transient decline in gluconeogenesis from lactate, which may be secondary to limited hepatic oxygen and substrate supply. Onset of gluconeogenesis in the fetus fails to sustain increases in either fetal or postnatal blood glucose concentrations.  相似文献   

18.
There was a reversible inhibition of urea formation in the perfused rat liver caused by 2.25-27 mM lysine acting with a Ki of 10.8 mM in competition with ornithine. Urea formation in the presence of inhibitory concentrations of lysine ranged between 2.3 and 2.9 mumol X min-1 X (g, liver wet)-1 after addition of 1 mM of citrulline, argininosuccinate or arginine, whereas it amounted to 0.5 mumol X min-1 X (g, liver wet)-1 after addition of ornithine, showing that lysine inhibited the urea cycle between ornithine and citrulline. There was a rise of basal orotate formation of 0.03 +/- 0.02 mumol X h-1 X (g, liver wet)-1 towards a maximum of 0.6 +/- 0.04 mumol X h-1 X (g, liver wet)-1 after addition of 13.5 mM lysine, provided orotate utilization was blocked with allopurinol. Maximal rates of orotate formation were reached when ammonium concentrations exceeded 1 mM. We conclude that an inhibition of urea synthesis and a rise of orotate formation are caused by lysine in the isolated liver in vitro at rates observed in vivo. Hence, these metabolic alterations observed in the whole animal are most probably due to changes of liver metabolism.  相似文献   

19.
Zonation of the actions of ethanol on gluconeogenesis and ketogenesis from lactate were investigated in the bivascularly perfused rat liver. Livers from fasted rats were perfused bivascularly in the antegrade and retrograde modes. Ethanol and lactate were infused into the hepatic artery (antegrade and retrograde) and portal vein. A previously described quantitative analysis that takes into account the microcirculatory characteristics of the rat liver was extended to the analysis of zone-specific effects of inhibitors. Confirming previous reports, gluconeogenesis and the corresponding oxygen uptake increment due to saturable lactate infusions were more pronounced in the periportal region. Arterially infused ethanol inhibited gluconeogenesis more strongly in the periportal region (inhibition constant = 3.99 ± 0.22 mM) when compared to downstream localized regions (inhibition constant = 8.64 ± 2.73 mM). The decrease in oxygen uptake caused by ethanol was also more pronounced in the periportal zone. Lactate decreased ketogenesis dependent on endogenous substrates in both regions, periportal and perivenous, but more strongly in the former. Ethanol further inhibited ketogenesis, but only in the periportal zone. Stimulation was found for the perivenous zone. The predominance of most ethanol effects in the periportal region of the liver is probably related to the fact that its transformation is also clearly predominant in this region, as demonstrated in a previous study. The differential effect on ketogenesis, on the other hand, suggest that the net effects of ethanol are the consequence of a summation of several partial effects with different intensities along the hepatic acini.  相似文献   

20.
The effects of different vasomodulators on lactate release by the constant-flow-perfused rat hindlimb were examined and compared with that by perfused mesenteric artery, incubated preparations of aortas, soleus and epitrochlearis muscles, and perifused soleus muscles. Infusion of vasopressin (0.5 nM), angiotensin II (5 nM), norepinephrine (50 nM), and methoxamine (10 microM) into the hindlimbs of 180- to 200-g rats increased the perfusion pressure by 112-167% from 30.4 +/- 0.8 mmHg, O2 consumption by 26-68% from 6.4 +/- 0.2 mumol.g-1 x h-1, and lactate efflux by 148-380% from 5.41 +/- 0.25 mumol.g-1 x h-1. Hindlimbs of 100- to 120-g rats responded similarly to angiotensin II. Isoproterenol (1 microM) had no effect on O2 uptake or perfusion pressure but increased lactate release by 118%. Nitroprusside (0.5 mM) markedly inhibited the vasoconstrictor-mediated increases in lactate release, perfusion pressure, and O2 consumption by the hindlimb but had no effect on isoproterenol-mediated lactate efflux. Serotonin (6.7 microM) increased lactate release from the perfused mesenteric artery by 120% from 5.48 mol.g-1 x h-1. Lactate release by incubated aorta was increased by angiotensin II (50 nM), isoproterenol (1 microM), and mechanical stretch. The increase mediated by angiotensin II was blocked by glycerol trinitrate (2.2 microM), which had no effect on lactate release by isoproterenol. Neither angiotensin II (5 nM) nor vasopressin (0.5 nM) increased lactate release from incubated soleus and epitrochlearis muscles; however, lactate release was increased by isoproterenol, and this increase was unaffected by glycerol trinitrate (2.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号