首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. Results of a long-term (32 years) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)- wheat (Triticum aestivum L.) rotation was analyzed to determine the effects of mineral fertilizer and farmyard manure (FYM) application at 10 Mg?ha-1 on SOC stocks and depth distribution of the labile and recalcitrant pools of SOC. Results indicate all treatments increased SOC contents over the control. The annual application of NPK significantly (P?<?0.05) enhanced total SOC, oxidizable soil organic C and its fractions over the control plots. The increase in these SOC fractions was greater with the NPK + FYM treatment. Nearly 16% (mean of all treatments) of the estimated added C was stabilized into SOC both in the labile and recalcitrant pools, preferentially in the 0?C30 cm soil layer. However, the labile:recalcitrant SOC ratios of applied C stabilized was largest in the 15?C30 cm soil layer. About 62% of total SOC was present in the labile pool. Plots under the N + FYM and NPK + FYM treatments contained a larger proportion of total SOC in the recalcitrant pool than the plots with mineral or no fertilizer, indicating that FYM application promoted SOC stabilization.  相似文献   

2.
The study was carried out in a long-term fertilization field experiment of the Experimental Station of University of Pannonia, Department of Crop Science and Soil Science in 2006. The Long-term fertilization experiment was set up in 1983. In the experiment, the success of the weeds ability to grow under the influence of NPK, NPK + FYM* and NPK + straw treatments was compared, and the effect of increasing Nitrogen dosing on weediness was studied. The bifactorial test was arranged in split plot design with three replications. Treatment A: nutrient: NPK, NPK + 35 t/ha FYM* and NPK + straw manure. Treatment B: N kg/ha(-1) N0-N4 (0, 70, 140, 210, 280), and 100 kg P2O5 ha(-1) & 100 kg K20. The weed survey was made on 2nd of May 2006. There were spraying no herbicide until the survey. For the weed survey the Balázs-Ujvárosi coenological method was applied. Altogether, we have found 23 weed species in the trial. In the NPK treatment there were 20 species, in the treatment NPK+organic manure there were 17 species and in the NPK+ stalk rest treatment there were 16 weed species. The most dominant of the weeds on the NPK and NPK+straw manure treatments was Veronica hederifolia while on the fertilizer + FYM, the A. theophrasti was most dominant. The average weed covering value of the treatment NPK + FYM was 1.36 times higher (10.87%) than that of treatment NPK only (7.97%) and 3.65 times higher than on the NPK + straw manure treatment.  相似文献   

3.
不同农田生态系统土壤碳库管理指数的研究   总被引:22,自引:1,他引:22  
沈宏  曹志洪 《生态学报》2000,20(4):663-668
讨论不同农田生态系统的土壤活性碳库和碳库管理(CPMI),结果表明,不同农田生态系统的土壤CPMI明显受施肥、气候、土壤利用方式,耕种年限等因素的影响。供试土壤的活性碳含量范围为0.49~4.99mg/g,土壤CPMI为51.6~165。不同施肥地红壤CPMI的影响顺序为绿肥(GM)〉概肥(FYM)〉FYM-NPD〉参考(REF)〉NPK〉对照(CK),在水稻土中,共相应的影响顺序为,稻草(RSC  相似文献   

4.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

5.
A field experiment was conducted on a Vertisol for three consecutive years (1998-2000) to study the effects of combined use of inorganic fertilizer (NPK) and organic manure (farmyard manure) on soil physical properties, water-use efficiency, root growth and yield of soybean [Glycine max (L.) Merr.] in a soybean-mustard cropping system. Application of 10 Mg farmyard manure and recommended NPK (NPK+FYM) to soybean for three consecutive years improved the organic carbon content of the surface (0-15 cm) soil from an initial value of 4.4 g kg(-1) to 6.2 g kg(-1) and also increased seed yield and water-use efficiency by 103% and 76%, respectively, over the control. The surface (0-15 cm) soil of the plots receiving both farmyard manure and recommended NPK had larger mean weight diameter (0.50 mm) and a higher percentage of water stable aggregates (55%) than both the inorganically fertilized (NPK) (0.44 mm and 49%) and unfertilized control plots (0.41 mm and 45.4%). The saturated hydraulic conductivity (13.32 x 10(-6) m s(-1)) of the NPK+FYM treatment of the 0-7.5 cm depth was also significantly greater than that of the NPK (10.53 x 10(-6) m s(-1)) and control (8.61 x 10(-6) m s(-1)) treatments. The lowest bulk density (1.18 Mg m(-3)) in the 0-7.5 cm layer was recorded in NPK+FYM whereas it was highest in the control plots (1.30 Mg m(-3)). However, at sub-surface (22.5-30 cm) layer, fertilizer and manure application had little effect on bulk density and saturated hydraulic conductivity. Root length density (RLD) up to the 30 cm depth was highest in the NPK+FYM plots and it was 31.9% and 70.5% more than NPK and control plots. The RLD showed a significant and negative correlation (r=-0.88( * *)) with the penetration resistance.  相似文献   

6.
Physical separation of soil into different soil organic matter (SOM) fractions is widely used to identify organic carbon pools that are differently stabilized and have distinct chemical composition. However, the mechanisms underlying these differences in stability and chemical composition are only partly understood. To provide new insights into the stabilization of different chemical compound classes in physically-separated SOM fractions, we assessed shifts in the biomolecular composition of bulk soils and individual particle size fractions that were incubated in the laboratory for 345 days. After the incubation, also the incubated bulk soil was fractionated. The chemical composition of organic matter in bulk soils and fractions was characterized by 13C-CPMAS nuclear magnetic resonance spectroscopy and sequential chemical extraction followed by GC/MS measurements. Plant-derived lipids and lignin were abundant in particulate organic matter (POM) fractions of sand-, silt-, and clay-size and the mineral-bound, clay-sized organic matter. These results indicate that recent conceptualizations of SOM stabilization probably understate the contribution of plant-derived organic matter to stable SOM pools. Although our data indicate that inherent recalcitrance could be important in soils with limited aggregation, organo-mineral interactions and aggregation were responsible for long-term SOM stabilization. In particular, we observed consistently higher concentrations of plant-derived lipids in POM fractions that were incubated individually, where aggregates were disrupted, as compared to those incubated as bulk soil, where aggregates stayed intact. This finding emphasizes the importance of aggregation for the stabilization of less ‘recalcitrant’ biomolecules in the POM fractions. Because also the abundance of lipids and lignin in clay-sized, mineral-associated SOM was substantially influenced by aggregation, the bioavailability of mineral-associated SOM likely increases after the destruction of intact soil structures.  相似文献   

7.
A field experiment was conducted to investigate the effect of six long-term (34-year) fertilizer and farmyard manure (FYM) treatments (Control, N, NP, NPK, NPK+S, NPK+FYM) and three physiological stages of wheat growth on the microbial biomass carbon (MBC), nitrogen (MBN) and dehydrogenase, mineralizable N and phosphatase activities in soil. It was found that a balanced application of NPK+FYM gave the highest values for the measured parameters and lowest at the control. Values were generally highest at tillering, followed by the flowering and dough stages. A significant positive interaction between fertilizer treatments and physiological stages of wheat growth was observed, being highest at maximum tillering due to application of NPK+FYM. Stepwise regressions have revealed that grain yield of wheat was significantly associated with mineralizable N at tillering (R(2)=0.80), MBC at flowering (R(2)=0.90) and alkaline phosphatase activity (R(2)=0.70) at dough stages of wheat growth.  相似文献   

8.

Soil aggregates govern soil organic carbon (SOC) sequestration. But, sparse understanding about the process leads to inaccuracy in predicting potential of soil to stabilize C in warming world. We appraised effects of 43 years of fertilization on relative temperature sensitivity of SOC decomposition (Q10) in soil aggregates to know whether SOC quality or quantity governs Q10. Treatments were: fallow, control, 100% recommended dose of nitrogen (N), N and phosphorus (NP), N, P and potassium (NPK), and NPK + farmyard manure (FYM) (NPK + FYM). Macroaggregates, microaggregates and silt + clay (s + c) fractions were incubated for 16 weeks at 25, 35 and 45 °C, SOC quality (R0) and Q10 were computed. SOC mineralization from macro- and micro- aggregates were 34 and 28% higher than s + c across the treatments. The s + c fraction of NPK + FYM had ~ 41, 40 and 24% higher C decay rate than NPK plots at 25, 35 and 45 °C, respectively. For s + c fraction Q10 increased over other aggregates. Mean Q10 of s + c fraction was ~ 18.3 and 17.5% higher than macro and micro-aggregate-C, respectively. R0 was the lowest for NPK + FYM, suggesting long-term manuring with balanced NPK significantly enhance recalcitrance of C. We observed Q10 of macroaggregates and s + c fraction is controlled by C quality but C quantity governs Q10 of microaggregates in Vertisol. Specifically, microaggregates of NPK + FYM were more temperature sensitive, and could be vulnerable to C loss. Hence, practices facilitating microaggregate formation should be avoided. Thus, we recommend manure application for facilitating C sequestration.

  相似文献   

9.
Abstract We studied the influence of tree species on soil carbon and nitrogen (N) dynamics in a common garden of replicated monocultures of fourteen angiosperm and gymnosperm, broadleaf and needleleaf species in southwestern Poland. We hypothesized that species would influence soil organic matter (SOM) decomposition primarily via effects on biogeochemical recalcitrance, with species having tissues with high lignin concentrations retarding rates of decomposition in the O and A horizons. Additionally, because prior work demonstrated substantial divergence in foliar and soil base cation concentrations and soil pH among species, we hypothesized that species would influence chemical stabilization of SOM via cation bridging to mineral surfaces in the A-horizon. Our hypotheses were only partially supported: SOM decomposition and microbial biomass were unrelated to plant tissue lignin concentrations, but in the mineral horizon, were significantly negatively related to the percentage of the cation exchange complex (CEC) occupied by polyvalent acidic (hydrolyzing) cations (Al and Fe), likely because these cations stabilize SOM via cation bridging and flocculation and/or because of inhibitory effects of Al or low pH on decomposers. Percent CEC occupied by exchangeable Al and Fe was in turn related to both soil clay content (a parent material characteristic) and root Ca concentrations (a species characteristic). In contrast, species influenced soil N dynamics largely via variation in tissue N concentration. In both laboratory and in situ assays, species having high-N roots exhibited faster rates of net N mineralization and nitrification. Nitrification:mineralization ratios were greater, though, under species with high exchangeable soil Ca2+. Our results indicate that tree species contribute to variation in SOM dynamics, even in the mineral soil horizons. To our knowledge the influence of tree species on SOM decomposition via cation biogeochemistry has not been demonstrated previously, but could be important in other poorly buffered systems dominated by tree species that differ in cation nutrition or that are influenced by acidic deposition.  相似文献   

10.
This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry‐field condition and field capacity, were applied to an incubation that lasted 111 days. Short‐term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above‐defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)‐rich deciduous savanna than at the N‐limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress‐induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework.  相似文献   

11.
Plant- and microbially derived carbon (C) are the two major sources of soil organic matter (SOM), and their ratio impacts SOM composition, accumulation, stability, and turnover. The contributions of and the key factors defining the plant and microbial C in SOM along the soil profile are not well known. By leveraging nuclear magnetic resonance spectroscopy and biomarker analysis, we analyzed the plant and microbial C in three soil types using regional-scale sampling and combined these results with a meta-analysis. Topsoil (0–40 cm) was rich in carbohydrates and lignin (38%–50%), whereas subsoil (40–100 cm) contained more proteins and lipids (26%–60%). The proportion of plant C increases, while microbial C decreases with SOM content. The decrease rate of the ratio of the microbially derived C to plant-derived C (CM:P) with SOM content was 23%–30% faster in the topsoil than in the subsoil in the regional study and meta-analysis. The topsoil had high potential to stabilize plant-derived C through intensive microbial transformations and microbial necromass formation. Plant C input and mean annual soil temperature were the main factors defining CM:P in topsoil, whereas the fungi-to-bacteria ratio and clay content were the main factors influencing subsoil CM:P. Combining a regional study and meta-analysis, we highlighted the contribution of plant litter to microbial necromass to organic matter up to 1-m soil depth and elucidated the main factors regulating their long-term preservation.  相似文献   

12.
Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63–2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus (Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. 14C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation.  相似文献   

13.
Forest harvesting alters the organic matter cycle by changing litter inputs and the decomposition regime. We hypothesized that these changes would result in differences in organic matter chemistry between clear-cut and uncut watershed ecosystems. We studied the chemistry of soil organic matter (SOM), and dissolved organic carbon (DOC) in soil solutions and stream samples in clear-cut and uncut sites at the Hubbard Brook Experimental Forest in New Hampshire using DOC fractionation techniques and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy.Alkyl-C (aliphatic compounds) and O-alkyl-C (carbohydrates) were the largest C fractions in soil and dissolved organic matter at Hubbard Brook. Alkyl-C ranged from 29–48% of soil C, 25–42% of soil solution C, and 22–42% of streamwater DOC. Carbohydrates comprised 32–49%, 36–43%, and 29–60% of C in soils, solutions, and streamwater, respectively. In both soils and soil solutions, the carbohydrate fraction decreased with increasing soil depth, while the aromaticity of organic matter increased with depth. There were no significant differences in the structural chemistry of SOM between clear-cut and uncut watersheds.The aromatic-C fractions in soil solutions at the clear-cut site ranged from 12–16%, approximately 40% greater than at the uncut site (8.5–11%). Thus, clear-cutting has resulted in the leaching of more highly decomposed organic matter, and depletion of more aliphatic compounds in the soluble organic pool. Because DOC fluxes are small compared to the SOM pool, large differences in soil solution chemistry do not substantially alter the overall composition of SOM. While the organic chemistry of stream DOC varied greatly among 3 sampling dates, there were no obvious clear-cutting effects. Thus, temporal variations in flowpaths and/or in-stream processes appear to be more important than disturbance in regulating the organic carbon chemistry of these streams.  相似文献   

14.
Labile, ‘high‐quality’, plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High‐quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than ‘low‐quality’ litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency‐Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high‐quality litters are not always stabilized in SOM with greater efficiency than low‐quality litters.  相似文献   

15.
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (?31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.  相似文献   

16.
Small-scale spatial heterogeneity of soil organic matter (SOM) associated with patterns of plant cover can strongly influence population and ecosystem dynamics in dry regions but is not well characterized for semiarid grasslands. We evaluated differences in plant and soil N and C between soil from under individual grass plants and from small openings in shortgrass steppe. In samples from 0 to 5 cm depth, root biomass, root N, total and mineralizable soil N, total and respirable organic C, C:N ratio, fraction of organic C respired, and ratio of respiration to N mineralization were significantly greater for soil under plants than soil from openings. These differences, which were consistent for two sites with contrasting soil textures, indicate strong differentiation of surface soil at the scale of individual plants, with relative enrichment of soil under plants in total and active SOM. Between-microsite differences were substantial relative to previously reported differences associated with landscape position and grazing intensity in shortgrass steppe. We conclude that microscale heterogeneity in shortgrass steppe deserves attention in investigation of controls on ecosystem and population processes and when sampling to estimate properties at plot or site scales.  相似文献   

17.
通过监测绿洲滴灌棉田不同秸秆管理和施肥方式下土壤有机碳库及碳库组分的变化,可揭示农田管理措施对棉田土壤有机碳库的调节机制,为干旱区提高农田土壤生产力以及农业固碳减排措施的制定提供科学依据.试验采用裂区设计,以秸秆还田(S)和秸秆不还田(NS)2种秸秆管理方式为主区,4种施肥处理为副区:包括不施肥(CK)、单施氮磷钾化肥(NPK)、单施有机肥(OM)和氮磷钾化肥与有机肥混施(NPK+OM).结果表明: 施肥和秸秆还田均显著增加了土壤有机碳库,提高了有机碳(CT)、易氧化有机碳(CL)、微生物生物量碳(CMB)、水溶性有机碳(CWS)、热水溶性有机碳(CHWS)的含量和有机碳累计矿化量(CTM)及碳库管理指数(CMI).秸秆还田较秸秆不还田土壤有机碳库提高了20.6%;处理NPK、OM、NPK+OM分别较CK提高了7.8%、29.5%、37.7%.不同施肥处理下CT、CL、CMB、CWS、CHWS均表现为NPK+OM>OM>NPK>CK.秸秆还田较秸秆不还田CTM提高了5.9%;NPK、OM、NPK+OM处理较CK分别提高了32.7%、59.5%、97.3%.对CMI与SOC及其组分间的相关性分析表明,CMI与CT、CMB、CL、CWS、CHWS、CTM、C库、固碳潜力均呈极显著相关关系,因此, CMI是评价绿洲棉田管理措施对土壤质量影响的重要指标.在干旱区建设高标准绿洲农田,发展棉花生产,采用秸秆还田和有机无机肥配施等农业技术措施,不仅能增加土壤有机碳及活性组分的含量,培肥地力,而且能促进土壤固碳,有利于农业资源高效利用和可持续发展.  相似文献   

18.
Solid surface fluorescence excitation-emission matrix (EEM) is developed a potential method to characterize soil organic matter (SOM). Solid surface EEM spectroscopy with parallel factor analysis (PARAFAC) and hierarchical cluster analysis (HCA) is used to extract fluorescent components, to seek latent factors, and to investigate spatial distribution of SOM. Soil samples were collected from four native halophyte and two furrow-irrigated soil profiles, i.e. Comm. Salicornia europaea (CSE), Comm. Suaeda glauca (CSG), Comm. Kalidium cuspidatum (CKC), Comm. Sophora alopecuroides (CSA), corn fields (CFD), and wheat fields (WFD). SOM contained six fluorescent components: microbial/terrestrial fulvic-like fluorescent components (C1), tryptophan-like/lignin-derived phenol fluorescent components (C2), terrestrial humic-like fluorescent component (C3), lignin oxidative degradation by-products (C4 and C5), and amino acids (C6). The C 4 and C5 were the representative components of SOM within the CSE, CSG, CKC, CSA and CFD soil profiles, while the C2 and C6 were dominated within the WFD soil profile. The C4, C5, C1 and C2 were latent factors, and they could roughly distinguish SOM within the whole saline soil profiles except the CFD. A humification index (H/L) deduced from the fluorescent components, was very suitable to indicate humification levels of SOM. Humification levels of SOM within the halophyte soil profiles decreased with soil depth, but the opposite trends within the furrow-irrigated soil profiles. The H/L was closely correlated with exchangeable sodium percentage (ESP), and humification levels increased with the decreasing ESP. Soil surface EEM may not only indicate organic matter fractions of saline soils, but may be transferred to other types of landscape.  相似文献   

19.
2011年12月至2012年9月, 在湘中丘陵区杉木(Cunninghamia lanceolata)人工林、马尾松(Pinus massoniana)-石栎(Lithocarpus glaber)针阔混交林、南酸枣(Choerospondias axillaries)落叶阔叶林、石栎(Lithocarpus glaber)-青冈(Cyclobalanopsis glauca)常绿阔叶林1 hm2的长期定位观测样地, 采集0-15 cm、15-30 cm土层土壤样品, 测定土壤微生物生物量碳(MBC)、可矿化有机碳(MOC)、易氧化有机碳(ROC)、水溶性有机碳(DOC)含量, 分析4种森林土壤MBC、MOC、ROC、DOC含量的季节变化特征, 为揭示天然林保护与恢复对土壤有机碳(SOC)库的影响机理过程提供基础数据。结果表明: 森林土壤MBC、MOC、ROC、DOC含量具有明显的季节动态, 且不同森林同一土壤活性有机碳组分的季节变化节律基本一致, MBC、MOC、ROC含量表现为夏、秋季较高, 春、冬季较低; DOC含量表现为春、夏、冬季较高, 秋季最低; 同一森林不同土壤活性有机碳组分含量的季节变化节律不同; 土壤MBC、MOC、ROC、DOC含量与土壤自然含水率、SOC、全N、水解N、全P (除杉木人工林土壤MBC、MOC、ROC外)、速效P含量显著或极显著正相关, 与土壤pH值、全K、速效K含量相关性不显著, 表明不同森林类型外源碳库投入和土壤理化性质的差异是导致不同森林类型土壤活性有机碳含量差异显著的主要原因, 该区域森林土壤活性有机碳各组分含量的季节变化与各森林类型组成树种生长节律及其土壤水分含量和SOC、N、P的可利用性, 以及土壤活性有机碳各组分的来源有关, 森林土壤MBC、MOC、ROC、DOC含量可作为衡量森林土壤C、N、P动态变化的敏感性指标。  相似文献   

20.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号