首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Blood brain barrier (BBB) dysfunction is a common facet of cerebral ischemia, and the alteration of drug transporter, P-glycoprotein (P-gp), has been documented.

Aims

This study explores influence of damaged BBB and elevated P-gp on cerebral verapamil penetration after ischemia both in vivo and in vitro.

Methods

Middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (I/R) of rats, and Na2S2O4 induced hypoxia/reoxygenation (H/R) damage of rat brain mirovessel endothelial cells (RBMECs) respectively, served as BBB breakdown model in vivo and in vitro. Evans-Blue (EB) extravagation and 125I-albumin were used to quantify BBB dysfunction; UPLC–MS/MS analytical method was performed to determine accurately the concentration of verapamil in brain tissue and cell. Flow cytometry, immunohistochemistry and western blotting were applied to evaluate transport function and protein expression of P-gp.

Results

Overexpressed ICAM-1 and MMP-9 mediated BBB dysfunction after ischemia, which induced EB leakage and 125I-albumin uptake increase. Enhanced accumulation of verapamil in brain tissue, but intracellular concentration reduced evidently after H/R injury. Transcellular transportation of verapamil elevated when P-gp function or expression was inhibited after H/R injury.

Conclusion

These data indicated that BBB penetration of verapamil under ischemia condition was not only depending on BBB breakdown, but also regulated by P-gp.  相似文献   

2.
FLZ, a novel anti-Parkinson''s disease (PD) candidate drug, has shown poor blood-brain barrier (BBB) penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson''s conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs) and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER) and low permeability for sodium fluorescein (NaF) confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport.  相似文献   

3.
In mammalian systems, pregnane X receptor (PXR) and constitutive androstane receptor (CAR) have been recognized as xenobiotic-sensors which can up-regulate the functional expression of drug transporters, such as P-glycoprotein (P-gp). In the brain, an increase in P-gp expression can further limit drug permeability across the blood-brain barrier (BBB) and potentially reduce CNS pharmacotherapy efficacy. At present, the involvement of human PXR (hPXR) and CAR (hCAR) in the regulation of P-gp expression at the human BBB is unknown. In this study, we investigate the role of hPXR and hCAR in the regulation of P-gp expression using a human cerebral microvessel endothelial cell culture system. We demonstrate that activation of hPXR and hCAR by their respective ligands leads to P-gp induction at both mRNA and protein levels, while pharmacological inhibitors of hPXR and hCAR prevent ligand-mediated P-gp induction. Ligand-induced nuclear translocation of hPXR is observed, although such effect could not be demonstrated for hCAR. Furthermore, down-regulation of hPXR and hCAR proteins using small-interfering RNA decreased P-gp expression. Our findings provide first evidence for P-gp regulation by hPXR and hCAR at the human BBB and suggest insights on how to achieve selective P-gp regulation at this site.  相似文献   

4.
The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from the blood to the extracellular fluid environment of the brain. The multidrug efflux pump P-glycoprotein (P-gp) is highly expressed in the luminal membrane of brain capillary endothelial cells, thus forming a functional barrier to lipid-soluble drugs, notably, antitumor agents. It is of interest to develop an in vitro BBB model that stably expresses P-gp to investigate the mechanisms of regulation in expression and activity. The rat brain endothelial cell line, GPNT, was derived from a previously characterized rat brain endothelial cell line. A strong expression of P-gp was found in GPNT monocultures, whereas the multidrug resistance-associated pump Mrp1 was not expressed. The transendothelial permeability coefficient of the P-gp substrate vincristine across GPNT monolayers was close to the permeability coefficient of bovine brain endothelial cells cocultured with astrocytes, a previously documented in vitro BBB model. Furthermore, the P-gp blocker cyclosporin A induced a large increase in apical to basal permeability of vincristine. Thus, P-gp is highly functional in GPNT cells. A 1-h treatment of GPNT cells with dexamethasone resulted in decreased uptake of vincristine without any increase in P-gp expression. This effect could be mimicked by protein kinase C (PKC) activation and prevented by PKC inhibition, strongly suggesting that activation of P-gp function may involve a PKC-dependent pathway. These results document the GPNT cell line as a valuable in vitro model for studying drug transport and P-gp function at the BBB and suggest that activation of P-gp activity at the BBB might be considered in chemotherapeutic treatment of cancer patients.  相似文献   

5.
Alzheimer's disease is characterized by the presence of amyloid deposition. Thioflavin T (ThT) has been one of the molecules of choice to attempt the detection of these amyloid deposits. However, it has been reported that ThT was unable to cross blood-brain barrier (BBB). Our aim was to understand the mechanism according to which it has been said that ThT is not able to cross the BBB. For this purpose we have used cellular models overexpressing P-glycoprotein (P-gp) or multidrug resistance-associated protein (MRP1), two proteins overexpressed in BBB. Our results show that: (i) ThT is able to cross membranes and to penetrate inside the cells; (ii) ThT is a P-gp substrate; (iii) ThT is poor MRP1 substrate. In conclusion, our results suggest that two factors could be involved in the low accumulation of ThT in the brain: ThT is a P-gp substrate and its lipophilicity is low.  相似文献   

6.
P-glycoprotein (P-gp), an adenosine triphosphate (ATP)-binding cassette transporter which acts as a drug efflux pump, is highly expressed at the blood-brain barrier (BBB) where it plays an important role in brain protection. Recently, P-gp has been reported to be located in the caveolae of multidrug-resistant cells. In this study, we investigated the localization and the activity of P-gp in the caveolae of endothelial cells of the BBB. We used an in vitro model of the BBB which is formed by co-culture of bovine brain capillary endothelial cells (BBCEC) with astrocytes. Caveolar microdomains isolated from BBCEC are enriched in P-gp, cholesterol, caveolin-1, and caveolin-2. Moreover, P-gp interacts with caveolin-1 and caveolin-2; together, they form a high molecular mass complex. P-gp in isolated caveolae is able to bind its substrates, and the caveolae-disrupting agents filipin III and nystatin decrease P-gp transport activity. In addition, mutations in the caveolin-binding motif present in P-gp reduced the interaction of P-gp with caveolin-1 and increased the transport activity of P-gp. Thus, P-gp expressed at the BBB is mainly localized in caveolae and its activity may be modulated by interaction with caveolin-1.  相似文献   

7.
8.
Morphine may affect the properties of the blood-brain barrier (BBB) by modifying the expression of certain BBB markers. We have determined the effect of chronic morphine treatment on the expression and function of some BBB markers in the rat. The mRNAs of 19 selected genes encoding caveolins, endothelial transporters, receptors and tight junctions proteins in the total RNA of isolated cortex microvessels were assayed by quantitative RT-PCR (qRT-PCR). The expression of genes Mdr1a, Mrp1, Bcrp, Glut-1 and Occludin, was slightly increased, while that of Flk-1 was decreased in microvessels from morphine-treated rats. The expression of the Mrd1a and Mdr1b genes encoding the P-glycoprotein (P-gp) also increased in the whole hippocampus and cortex of morphine-treated rats. The Mdr1a gene induction (1.38-fold) observed by qRT-PCR was also confirmed using in situ hybridization technique (1.40-fold). Immunoblotting revealed an increase in P-gp expression in the hippocampus (1.8-fold) and cortex (1.36-fold) of morphine-treated rats, but no effect in isolated microvessels. In contrast, morphine treatment increased by 1.48-fold the expression of P-gp in a large vessel-enriched fraction. The integrity of the BBB, measured by in situ brain perfusion of [(14)C]-sucrose, and the activity of P-gp at the BBB, measured with the P-gp substrate [(3)H]-colchicine, were not modified by morphine. Immunohistofluorescence experiments revealed that P-gp expression is restricted to large vessels and microvessels in control rats and that morphine treatment did not induce the expression of P-gp in the brain parenchyma (astrocytes or neurons). Taken together, our results showed that chronic morphine treatment does not significantly alter BBB integrity or P-gp activity. The impact of morphine-mediated P-gp induction observed in large vessels remains to be determined in terms of brain disposition of drugs that are P-gp substrates.  相似文献   

9.
Recent studies suggest that the function of the blood–brain barrier (BBB) is not static under normal physiologic conditions and is likely altered in neurodegenerative disease. Prevailing thinking about CNS function, and neurodegenerative disease in particular, is neurocentric excluding the impact of factors outside the CNS. This review challenges this perspective and discusses recent reports suggesting the involvement of peripheral factors including toxins and elements of adaptive immunity that may not only play a role in pathogenesis, but also progression of neurodegenerative diseases. Central to this view is neuroinflammation. Several studies indicate that the neuroinflammatory changes that accompany neurodegeneration affect the BBB or its function by altering transport systems, enhancing immune cell entry, or influencing the BBB's role as a signaling interface. Such changes impair the BBB's normal homeostatic function and affect neural activity. Moreover, recent studies reveal that alterations in BBB and its transporters affect the entry of drugs used to treat neurodegenerative diseases. Incorporating BBB compromise and dysfunction into our view of neurodegenerative disease leads to the inclusion of peripheral mediators in its pathogenesis and progression. In addition, this changing view of the BBB raises interesting new therapeutic possibilities for drug delivery as well as treatment strategies designed to reinstate normal barrier function.  相似文献   

10.
Expression of P-glycoprotein in human cerebral cortex microvessels.   总被引:11,自引:0,他引:11  
P-Glycoprotein (P-gp) is an ATP-dependent efflux transporter that extrudes non-polar molecules, including cytotoxic substances and drugs, from the cells. It was initially found in cancer cells and then was shown to be a normal component of complex transport systems working at the blood-brain barrier (BBB). Previous studies have demonstrated that, in the brain, P-gp is localized on the luminal plasmalemma of BBB endothelial cells and that it may interact with the caveolar compartment of these cells. The aim of this study was to identify the site of cellular expression of P-gp in human brain in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1, a structural and functional protein of the caveolar frame. The study was carried out on human cerebral cortex by immunoconfocal microscopy with antibodies to both P-gp and caveolin-1. The results show that P-gp marks the microvessels of the cortex and that the transporter is localized in the luminal endothelial compartment, where it co-localizes with caveolin-1. The demonstration of this co-localization of P-gp with caveolin-1 contributes a morphological backing to biochemical studies on P-gp/caveolin-1 relationships and leads us to suggest that interactions between these molecules may occur at the BBB endothelia.  相似文献   

11.
In situ localization of P-glycoprotein (ABCB1) in human and rat brain.   总被引:6,自引:0,他引:6  
Transport of several xenobiotics including pharmacological agents into or out of the central nervous system (CNS) involves the expression of ATP-dependent, membrane-bound efflux transport proteins such as P-glycoprotein (P-gp) at the blood-brain barrier (BBB). Previous studies have documented gene and protein expression of P-gp in brain microvessel endothelial cells. However, the exact localization of P-gp, particularly at the abluminal side of the BBB, remains controversial. In the present study we examined the cellular/subcellular distribution of P-gp in situ in rat and human brain tissues using immunogold cytochemistry at the electron microscope level. P-gp localizes to both the luminal and abluminal membranes of capillary endothelial cells as well as to adjacent pericytes and astrocytes. Subcellularly, P-gp is distributed along the nuclear envelope, in caveolae, cytoplasmic vesicles, Golgi complex, and rough endoplasmic reticulum (RER). These results provide evidence for the expression of P-gp in human and rodent brain capillary along their plasma membranes as well as at sites of protein synthesis, glycosylation, and membrane trafficking. In addition, its presence at the luminal and abluminal poles of the BBB, including pericytes and astrocyte plasma membranes, suggests that this glycoprotein may regulate drug transport processes in the entire CNS BBB at both the cellular and subcellular level.  相似文献   

12.
It has been proposed that the amyloid-β peptides (Aβ) cause the neuronal degeneration in the Alzheimer’s disease brain. An imbalance between peptide production at the neuronal level and their elimination across the blood–brain–barrier (BBB) results in peptide accumulation inside the brain. The identification and functional characterization of the transport systems in the BBB with the capacity to transport Aβ is crucial for the understanding of Aβ peptide traffic from the brain to the blood. In this context, it has been suggested that the P-glycoprotein (P-gp), expressed in endothelial cells of the BBB, plays a role in the elimination of Aβ. However, there is little, if any, experimental evidence to support this; therefore, the aim of this investigation was to determine whether P-gp is capable of transporting Aβ peptides. Our results show that ATPase activity measured in plasma membrane vesicles of K562 cells overexpressing P-gp is not increased by the presence of Aβ42, suggesting that Aβ42 is not a P-gp substrate. Similarly, P-gp of pirarubicin was unaffected by Aβ42. Moreover, the overexpression of P-gp does not protect cells against Aβ42 toxicity. Taken together, our results support the conclusion that Aβ42 is not transported by P-gp.  相似文献   

13.
The blood-brain barrier (BBB), composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp), expressed at high levels in brain endothelial cells, has several drug substrates. Consequently, siRNA mediated silencing of the P-gp gene is one possible strategy how to improve the delivery of drugs to the brain. Herein, we investigated the potential of siRNA-chitosan nanoparticles in silencing P-gp in a BBB model. We show that the transfection of rat brain endothelial cells mediated effective knockdown of P-gp with subsequent decrease in P-gp substrate efflux. This resulted in increased cellular delivery and efficacy of the model drug doxorubicin.  相似文献   

14.
Phoneutria nigriventer spider venom (PNV) contains Ca(2+), K(+) and Na(+) channel-acting peptides that affect neurotransmitter release and causes excitotoxicity in PNS and CNS. It has been demonstrated that PNV causes blood-brain barrier (BBB) breakdown of hippocampal microvessels time-dependently through enhanced microtubule-mediated vesicular transport. Herein, it is hypothesized that PNV can cause BBB breakdown in the hippocampus and cerebellum time-dependently through other molecular mechanisms. The BBB integrity was assessed through the analysis of expression of Poly-glycoprotein (P-gp) efflux transporter protein, laminin from basement membrane and endothelial tight junctional and adhesion junctional (TJ/AJ) proteins. Phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) expression, which are known to have a role in the phosphorylation of junctional proteins and BBB opening, were also investigated. Astrocytes P-gp activity was determined by flow cytometry. The study demonstrated temporary decreased expression of laminin, TJ and AJ proteins (ZO1//occludin//claudin-5//beta-catenin) and P-gp (more prominently in hippocampus), which was completely or partially resolved between 2 and 5?h (and more quickly for cerebellum). PNV inhibited P-gp activity in astrocytes. PP2A phosphorylation, which inhibits the enzyme activity, was increased in both regions (15-45?min); however the phosphorylation level returned to baseline after 2?h. In conclusion, PNV disrupts paracellular transport in the BBB and possesses substrates for the active P-gp efflux transporter located in the BBB complex. Further studies into cellular mechanisms of astrocyte/endothelial interactions, using PNV as tool, may identify how astrocytes regulate the BBB, a characteristic that may be useful for the temporary opening of the BBB.  相似文献   

15.
Hypoxia and post-hypoxic reoxygenation induces disruption of the blood–brain barrier (BBB). Alterations of the BBB function after hypoxia/reoxygenation (H/R) injury remain unclear. Cyclosporin A (CsA), a potent immunosuppressant, induces neurotoxic effects by entering the brain, although the transport of CsA across the BBB is restricted by P-glycoprotein (P-gp), a multidrug efflux pump, and tight junctions of the brain capillary endothelial cells. The aim of this study was to evaluate whether the BBB after H/R damage is vulnerable to CsA-induced BBB dysfunction. We attempted to establish a pathophysiological BBB model with immortalized mouse brain capillary endothelial (MBEC4) cells. The effects of CsA on permeability and P-gp activity of the MBEC4 cells were then examined. Exposure to hypoxia for 4 h and reoxygenation for 1 h (H/R (4 h/1 h)) produced a significant decrease in P-gp function of MBEC4 cells, without changing cell viability and permeability for sodium fluorescein and Evan’s blue-albumin at 7 days after H/R (4 h/1 h). CsA-induced hyperpermeability and P-gp dysfunction in MBEC4 monolayers at 7 days after H/R (4 h/1 h) were exacerbated. The possibility that CsA penetrates the BBB with incomplete functions in the vicinity of cerebral infarcts to induce neurotoxicity has to be considered.  相似文献   

16.
Endothelial tight junctions and efflux transporters of the blood-brain barrier (BBB) significantly limit brain accumulation of many drugs, including protease inhibitors such as saquinavir. The cholinergic agonist nicotine is one of the most commonly used drugs in the world and the incidence is even higher in the human immune deficiency virus population (~ 70%). We examined the ability of nicotine and its primary metabolite cotinine to modify brain uptake of saquinavir in rats. Both nicotine and cotinine at pharmacological concentrations matching those in smokers, increased brain saquinavir uptake by two fold. Co-perfusion with nicotinic receptor antagonists and passive permeability markers showed that the effect was not caused by receptor activation or BBB permeability disruption. Transport inhibition studies demonstrated that brain saquinavir uptake is limited by multiple efflux transporters, P-glycoprotein (P-gp), breast cancer resistance protein and multidrug resistance-associated protein. In situ perfusion and in vitro experiments using a classical P-gp substrate rhodamine 123 linked the effect of nicotine to inhibition of BBB P-gp transport. The effect was confirmed in vivo in chronic 14 day nicotine administration animals. These data suggest nicotine increases antiretroviral drug exposure to brain and may represent a significant in vivo drug-drug interaction at the BBB. Although this may slightly benefit CNS antiretroviral efficacy, it may also expose the brain to potential serious neurotoxicity.  相似文献   

17.
The MDR1 gene product, P-glycoprotein (P-gp), was shown to confer multidrug resistance to cancer cells, but its overexpression is also suggested to be involved in pharmacoresistance of epilepsy by acting as an energy-dependent drug-efflux pump in the blood-brain barrier (BBB). In normal brain tissue, P-gp is almost exclusively expressed by capillary endothelial cells (EC) of the BBB, whereas little or no expression is detected in other cell types. Increased P-gp expression was observed after seizures, but localization of this increase, i.e., within brain capillary EC or within parenchymal or perivascular astrocytes, which contribute to the BBB function, is controversial. To test whether these antithetic data arise from unusual properties of the antigen itself, we compared different immunohistochemical techniques and monoclonal or polyclonal antibodies to P-gp in normal rat brain and rat brain after kainate-induced seizures. Using acetone-fixed cryostat sections of snap-frozen tissue, strong P-gp labeling was detected in EC and, after seizures, in hippocampal neurons, but not in astrocytes. In contrast, EC and neuronal P-gp immunolabeling were not seen in paraformaldehyde-fixed sections, whereas both perivascular and parenchymal astrocytes exhibited strong P-gp labeling after seizures. The lack of P-gp labeling in EC by paraformaldehyde fixation, was reversed by treatment of the sections with acetate/ethanol. These experiments demonstrate that various fixation conditions have a striking effect on the immunohistochemical localization of P-gp in rat brain and detection of its increased expression by seizures. When data obtained from different immunohistochemical techniques are taken together, seizures seem to induce overexpression of P-gp in four different cell types, i.e., EC, perivascular astrocytes, parenchymal astrocytes, and neurons.  相似文献   

18.
P-glycoprotein (P-gp) is a drug transporter which pumps toxic hydrophobic compounds out of cells, conferring mutidrug resistance. P-gp is predicted to consist of 12 transmembrane alpha-helices and there is a strong body of experimental support for this model. However, a number of studies, including those on P-gp expressed in E. coli, have reported topologies with fewer than 12 transmembrane alpha-helices, leading to the hypothesis that the transmembrane topology of the protein changes during function. It is well established that P-gp undergoes conformational changes during its transport cycle and it has been recently shown that these changes are large in magnitude and could, potentially, reflect a changing transmembrane topology. One therefore, reassessed the transmembrane topology of P-gp expressed in E. coli and compared it directly with the topology of the protein expressed in mammalian cells. It was clear that the transmembrane topology of the protein was different in the different cell types and that the misfolding of P-gp in E. coli was due to the misrecognition of multiple P-gp sequences as topogenic signals. Thus, the alternative transmembrane topologies reported for P-gp in E. coli are artefacts of the heterologous expression system used, and models based on such data in which the transmembrane topology changes during drug transport are unlikely to be correct. Instead, the large conformational changes observed during the transport cycle are more likely due to changes in alpha-helix packing.  相似文献   

19.

Background  

Expression of P-glycoprotein (P-gp), the multidrug resistance (MDR) 1 gene product, can lead to multidrug resistance in tumours. However, the physiological role of P-gp in tumours growing as multicellular spheroids is not well understood. Recent evidence suggests that P-gp activity may be modulated by cellular components such as membrane proteins, membrane-anchoring proteins or membrane-lipid composition. Since, multicellular spheroids studies have evidenced alterations in numerous cellular components, including those related to the plasma membrane function, result plausible that some of these changes might modulate P-gp function and be responsible for the acquisition of multicellular drug resistance. In the present study, we asked if a human lung cancer cell line (INER-51) grown as multicellular spheroids can modify the P-gp activity to decrease the levels of doxorubicin (DXR) retained and increase their drug resistance.  相似文献   

20.
Zhu HJ  Liu GQ 《Life sciences》2004,75(11):1313-1322
The accumulation of glutamate in the extracellular space in the central nervous system (CNS) plays a major part in ischemic and anoxic damage. In this study, we examined the effect of glutamate on the expression and activity of P-glycoprotein (P-gp) in rat brain microvessel endothelial cells (RBMECs) making up the blood-brain barrier (BBB). The level of P-gp expression significantly increased in RBMECs after the treatment of 100 microM glutamate. At this concentration, glutamate also enhanced rat mdr1a and mdr1b mRNA levels determined by RT-PCR analysis. Flow cytometry was used to study P-gp activity by analysis of intracellular rhodamine123 (Rh123) accumulation. Overexpression of P-gp resulted in a decreased intracellular accumulation of Rh123 in RBMECs. Glutamate-induced increase of intracellular reactive oxygen species (ROS) was observed by using the 2',7'-dichlorofluorescein (2',7'-DCF) assay. MK-801, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and ROS scavenger N-acetylcysteine obviously blocked ROS generation and attenuated the changes of both expression and activity of P-gp induced by glutamate in RBMECs. These data suggested that glutamate up-regulated P-gp expression in RBMECs by an NMDA receptor-mediated mechanism and that glutamate-induced generation of ROS was linked to the regulation of P-gp expression. Therefore, transport of P-gp substrates in BBB appears to be affected during ischemic and anoxic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号