首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Commonly the TCA cycle fulfils an anabolic and a catabolic function in case of aerobic chemoorganoheterotrophic nutrition. In methylotrophic growth the TCA cycle is dispensable as a bioenergetic pathway. This is reflected by properties of citrate synthase in facultative methylotrophic bacteria. Two citrate synthases, a "chemoorganoheterotrophic" one, which is inhibited by NADH (or ATP in Acetobacter MB 58), and a "methylotrophic" one, which is not or less affected by energy indicators, were found in Pseudomonas oleovorans, Pseudomonas MS, Pseudomonas MA, and Acetobacter MB 58. The concentration of these citrate synthases depends on the manner of nutrition. Bacteria with ICL-negative-variant of the serine pathway and with ribulosebisphosphate pathway seem to possess only a "chemoorganoheterotrophic" citrate synthase. Possibly the anabolic function of this citrate synthase can be realized by metabolites.  相似文献   

2.
A survey of the possible nitrogen assimilation pathways in Hyphomicrobium X showed that when the nitrogen source was satisfied by ammonium sulphate or methylamine and the supply was in excess, NADPH-dependent glutamate dehydrogenase was used to assimilate nitrogen. When the nitrogen supply was limited the cells expressed high levels of glutamine synthetase and NADH-dependent glutamine:2-oxoglutamate aminotransferase activity whilst the activity of the glutamate dehydrogenase was lower. When nitrate was the N-source, the glutamine synthetase/glutamine oxoglutamate aminotransferase pathway was utilised irrespective of the nitrogen concentration in the medium. Evidence was obtained to suggest that the glutamine synthetase activity was regulated by adenylylation/deadenylylation. Carbon-limited chemostat cultures showed low glutamine synthetase activity levels but the synthesis of the enzyme was derepressed when the cultures became N-limited.  相似文献   

3.
Thirteen pink-pigmented facultative methylotrophic (PPFM) strains isolated from Adyar and Cooum rivers in Chennai and forest soil samples in Tamil Nadu, India, along with Methylobacterium extorquens, M. organophilum, M. gregans, and M. komagatae were screened for phosphate solubilization in plates. P-solubilization index of the PPFMs grown on NBRIP—BPB plates for 7 days ranged from 1.1 to 2.7. The growth of PPFMs in tricalcium phosphate amended media was found directly proportional to the glucose concentration. Higher phosphate solubilization was observed in four strains MSF 32 (415 mg l−l), MDW 80 (301 mg l−l), M. komagatae (279 mg l−l), and MSF 34 (202 mg l−l), after 7 days of incubation. A drop in the media pH from 6.6 to 3.4 was associated with an increase in titratable acidity. Acid phosphatase activity was more pronounced in the culture filtrate than alkaline phosphatase activity. Adherence of phosphate to densely grown bacterial surface was observed under scanning electron microscope after 7-day-old cultures. Biochemical characterization and screening for methanol dehydrogenase gene (mxaF) confirmed the strains as methylotrophs. The mxaF gene sequence from MSF 32 clustered towards M. lusitanum sp. with 99% similarity. This study forms the first detailed report on phosphate solubilization by the PPFMs.  相似文献   

4.
5.
In examining the presence of indole-3-acetic acid (IAA) in supernatants of pink-pigmented facultativemethylotrophic (PPFMs) bacterial cultures, three out of the 16 isolates tested showed a positive reaction ina colorimetric assay. The presence was further unambiguously con?rmed by high-performance liquidchromatography in combination with NMR. The IAA production was signi?cantly stimulated byL-tryptophan. These results prove that PPFM bacteria are able to produce the plant hormone IAA.  相似文献   

6.
50 Md conjugative plasmid, designated pM3, has been found in the cells from natural isolates of Pseudomonas sp M. The plasmid determines the resistance to tetracycline and streptomycin and is capable of conjugative transfer between the cells of Pseudomonas and Escherichia coli. The conjugative derivatives of pM3 deleted for 14 Md of molecular mass were isolated after acridine dyes treatment of cells harbouring plasmid pM3. The discovered plasmid was not shown to belong to IncP1 incompatibility group.  相似文献   

7.
Routine screening of indigenous and recombinant plasmids in pink facultative methylotrophic bacteria has been difficult, time-consuming, and yields variable results. We report a modified alkaline hydrolysis method for rapid plasmid isolation from these organisms that reproducibly results in good yields of closed circular plasmid DNA which can be readily digested with restriction enzymes. This method greatly facilitates direct screening of indigenous and introduced recombinant plasmids in the methylotrophic host strain. We have confirmed earlier findings that the original NCIB wild-type strain of Methylobacterium sp. strain AM1 (NCIB 9133) contains three cryptic plasmids. However, sizing of these plasmids by comparison to standards and by restriction fragment analysis suggests that they are larger than previously reported. We have designated these plasmids pAM1-1 (65 kb), pAM1-2 (40 kb) and pAM1-3 (33 kb). We have also shown that a rifamycin-resistant strain of Methylobacterium sp. strain AM1 used routinely in our laboratory lacks pAM1-2, although no phenotype has been associated with its loss. Finally, we have shown that another pink facultative methylotroph, Methylobacterium isolate (#YK1), contains three cryptic plasmids of approximately 43, 37 and 22 kb, respectively.  相似文献   

8.
Summary During the production of single cell protein ofMethylomonas sp. using methanol as the sole carbon source in the pilot plant scale, we isolated aBdellovibrio strain from an abnormal fermentation broth. The abnormality of fermentation caused byBdellovibrio was much like phage infection. However, the plaques formed byBdellovibrio enlarged progressively when plated with host.  相似文献   

9.
Alcohol-oxidizing enzymes of the facultative methylotroph PAR were investigated after growth of the bacteria on methanol and ethanol. During methanol growth only a phenazine methosulfate-linked alcohol dehydrogenase was detected. This enzyme had broad specificity for primary alcohols and was also capable of oxidation of secondary alcohols. It had a molecular weight of 112,000, was composed of two subunits of equal molecular weight, and showed an absolute requirement for ammonium ion for activation. During ethanol growth this enzyme was absent and was replaced by a typical nicotinamide adenine dinucleotide-linked alcohol dehydrogenase of molecular weight 150,000. The latter enzyme also had broad specificity but could not oxidize methanol. This enzyme was not found during methanol growth. These data show that the organism has two distinctly separate mechanisms for oxidation of alcohols.  相似文献   

10.
Regulation of tryptophan biosynthesis of facultative methylotrophic Pseudomonas sp. M was studied. Repression of the trpE, trpD and trpC genes by tryptophan was demonstrated. It was also shown that the trpE and trpDC genes are derepressed noncoordinately. No regulation of the trpF gene product could be demonstrated, indicating that its synthesis is constitutive. The trpA and trpB genes are inducible by indol-3-glycerophosphate. Anthranilate synthase and tryptophan synthase were sensitive to the feedback inhibition. The tryptophan concentrations giving 50% inhibition were estimated to be 9 microM and 1 microM, respectively. Experimental evidence for activation of the N-5-phosphoribosyl anthranilate isomerase and for inhibition of the indol-3-glycerophosphate synthase by some tryptophan intermediates was obtained.  相似文献   

11.
12.
The mode of glyoxylate production from acetyl-CoA was investigated in three strains of methylotrophic bacteria,Pseudomonas MA,Pseudomonas AM1 and organism PAR. This investigation was prompted by the recently reported discovery of a homoisocitrate lyase in methylotrophic bacteria and the suggested involvement of this novel enzyme in assimilation of C1 and C2 compounds as part of a homoisocitrate-glyoxylate cycle. We were unable to detect cleavage of any of the four stereoisomers of homoisocitric acid by cell-free extracts of C1-or C2-grown bacteria. Extracts of C1-grown bacteria did not catalyze condensation of glyoxylate with glutarate or production of glyoxylate from acetyl-CoA and 2-ketoglutarate. Extracts of C1-grownPseudomonas MA catalyzed cleavage of isocitrate;threo-homoisocitrate was a potent competitive inhibitor of this reaction. These results indicate that homoisocitrate cleavage does not occur in any of the methylotrophs tested. The pathway for oxidation of acetyl-CoA to glyoxylate inPseudomonas AM1 and organism PAR therefore remains obscure.  相似文献   

13.
Abstract Some pink pigmented facultative methylotrophic bacteria (PPFMs) can utilize monosaccharides as a single carbon source. Assays of key enzymes of various pathways of carbohydrate metabolism indicate that such strains either metabolise glucose by the Entner-Doudoroff pathway or lack a suitable permease for this sugar.  相似文献   

14.
Eighteen auxotropic trp- mutants of the facultative methylotrophic bacteria Pseudomonas sp. M. induced by nitrosoguanidine were characterized. Trp- mutants were tested for a number of biochemical properties: the capacity to grow on tryptophan intermediates, their accumulation in growth medium and activities of key enzymes. The trpE, trpD, trpC, trpF, trpB and trpA mutants were identified. The trpDC121 mutant with a one-point mutation has been obtained. This mutation caused inactivation of two enzymes--anthranilate-5-phosphoribosyl transferase and indole-3-glycerophosphate synthase. Unusual trpA and trpB auxotrophs with TrpAB- phenotype were described. It may be concluded that this type of mutations cause loss of catalytic activity of a subunit of tryptophan synthase as well as its structural modification. As a result, no active tryptophan synthase complex is formed and hence, the activity of the opposite intact subunit is inhibited.  相似文献   

15.
16.
A method for isolation of Tyr- mutants of facultative methylotrophic bacteria Pseudomonas sp. M which possess two tyrosine synthesis pathways is presented. The method is based on the two-step blocking of the tyrosine synthesis: the first step of the supplementary pathway of synthesis from phenylalanine, the second being the main pathway from 4-hydroxyphenylpyruvate.  相似文献   

17.
Genetics of carbon metabolism in methylotrophic bacteria   总被引:1,自引:0,他引:1  
Abstract The application of genetic techniques to the methylotrophic bacteria has greatly enhanced studies of these important organisms. Two methylotrophic systems have been studied in some detail, the serine cycle for formaldehyde assimilation and the methanol oxidation system. In both cases, genes have been cloned and mapped in Methylobacterium species (facultative serine cycle methanol-utilizers). In addition, methanol oxidation genes have been studied in an autotrophic methanol-utilizer ( Paracoccus denitrificans ) and three methanotrophs ( Methylosporovibrio methanica, Methylomonas albus and Methylomonas sp. A4). Although much remains to be learned in these systems, it is becoming clear that the order of C1 genes has been conserved to some extent in methylotrophic bacteria, and that many C1 genes are loosely clustered on the chromosome. Operons appear to be rare, but some examples have been observed. The extension of genetic approaches to both the obligate and facultative methylotrophs holds much promise for the future in understanding and manipulating the activities of these bacteria.  相似文献   

18.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

19.
Nitrogen assimilation in citrus trees   总被引:1,自引:0,他引:1  
Assimilation of 15N-ammonium and 15N-nitrate was examined in 3-year-old satsuma mandarin (Citrus unshiu Marcovitch) trees. Experiments were designed to establish the time course of incorporation of nitrogen just taken up into amino compounds. In fine roots, absorbed 15N-ammonium was actively incorporated into glutamine and then into glutamic acid and asparagine. When feeding 15N-nitrate, glutamic acid and asparagine were actively synthesized, but glutamine synthesis was comparatively low as compared with that in ammonium feeding. In current leaves and fruits, a clear difference in the labelling patterns of amino acids was found between the ammonium and nitrate feedings. The amino acid most markedly labelled was asparagine in the ammonium feeding and glutamine in the nitrate feeding. Considering the most heavily labelled component in leaves and fruits, the main form of the nitrogen components transported upward in the xylem was discussed.  相似文献   

20.
Physiology and genetics of methylotrophic bacteria   总被引:3,自引:0,他引:3  
Methylotrophic bacteria comprise a broad range of obligate aerobic microorganisms, which are able to proliferate on (a number of) compounds lacking carbon-carbon bonds. This contribution will essentially be limited to those organisms that are able to utilize methanol and will cover the physiological, biochemical and genetic aspects of this still diverse group of organisms. In recent years much progress has been made in the biochemical and genetic characterization of pathways and the knowledge of specific reactions involved in methanol catabolism. Only a few of the genetic loci hitherto found have been matched by biochemical experiments through the isolation or demonstration of specific gene products. Conversely, several factors have been identified by biochemical means and were shown to be involved in the methanol dehydrogenase reaction or subsequent electron transfer. For the majority of these components, their genetic loci are unknown. A comprehensive treatise on the regulation and molecular mechanism of methanol oxidation is therefore presented, followed by the data that have become available through the use of genetic analysis. The assemblage of methanol dehydrogenase enzyme, the role of pyrrolo-quinoline quinone, the involvement of accessory factors, the evident translocation of all these components to the periplasm and the dedicated link to the electron transport chain are now accepted and well studied phenomena in a few selected facultative methylotrophs. Metabolic regulation of gene expression, efficiency of energy conservation and the question whether universal rules apply to methylotrophs in general, have so far been given less attention. In order to expand these studies to less well known methylotrophic species initial results concerning such area as genetic mapping, the molecular characterization of specific genes and extrachromosomal genetics will also pass in review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号