首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular microbial ecology has revealed remarkable biodiversity - prokaryotic and eukaryotic - in numerous soil environments. However, no culture-independent surveys of the termitosphere exists, although termites dominate tropical rainforests. Here, we focused on soil feeders, building nests with their soil-born faeces, enriched with clay-organic complexes, thus contributing to the improvement of soil fertility. In order to assess the fungal community composition of these termitaries compared with soils not foraged by termites, samples of the two types were collected in the Lopé rainforest, Gabon, and processed for generation of fungal internal transcribed spacer (ITS) clone libraries. Although primers were universal, most of the recovered sequences represented Ascomycete that were previously uncharacterized and the proportions of which reached 72.5% in soils and 80% in termitaries. Their affiliation with identified fungi was analysed in performing a phylogenetic tree based on 5.8S rDNA. Furthermore, the ascomycete communities of soil-feeding termitaries and soils shared only 6.3% of sequences. This discrepancy of composition between soil and nest may result from the building behaviour of termites, as the organic matter in the nest is chemically modified, and some vacant ecological microniches are available for more specialized fungi.  相似文献   

2.
There are numerous reports on the accumulation of ammonia in the mounds of soil-feeding termites. Here, we provided direct evidence for an effective mineralization of nitrogenous soil organic matter in the gut of Cubitermes spp., which gives rise to enormous ammonia concentrations in the intestinal tract. In Cubitermes ugandensis, the ammonia content of the nest material [24.5 μmol (g dry wt.)−1] was about 300-fold higher than that of the parent soil. Large amounts of ammonia were present throughout the intestinal tract, with lowest values in the extremely alkaline gut sections (pH >12) and highest values posterior hindgut [185 μmol (g dry wt.)−1]. Results obtained with other Cubitermes species were similar. Ammonia concentrations in the posterior hindgut of these humivorous species (up to 130 mM) are among the highest values ever reported for soil macroinvertebrates and are matched only by insects feeding on an extremely protein-rich diet (e.g., the sarcophageous larvae of blowflies). Volatilization of ammonia [about 10 nmol (g fresh wt.)−1 h−1], either directly by emission from the termite body or indirectly from their feces, led to NH3 concentrations in the nest atmosphere of C. ugandensis that were three orders of magnitude above the ambient background – a relative accumulation that is considerably higher than that observed with CH4 and CO2. Together with previous results, these observations document that through their feeding activity and due to the physicochemical and biochemical properties of their digestive system, soil-feeding termites effectively catalyze the transformation of refractory soil organic nitrogen to a plant-available form that is protected from leaching by adsorption to the nest soil. Nitrogen mineralization rates of soil-feeding termites may surpass those effected by tropical earthworms and should contribute significantly to nitrogen fluxes in tropical ecosystems.  相似文献   

3.
In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.  相似文献   

4.
1. Nitrogen and carbon stable-isotope ratios (δ15N and δ13C) of body tissues, mound/nest materials and dietary substrates were determined in termite species with differing trophic habits, sampled from the Mbalmayo Forest Reserve, southern Cameroon.
2. δ15N of termite tissues was enriched gradually along a spectrum of species representing a trophic gradient from wood- to soil-feeding. Species that could be identified from their general biology and from gut content analysis as feeding on well-rotted wood or as wood/soil interface feeders showed δ15N intermediate between sound-wood-feeders and soil-feeders. It is proposed that δ15N is therefore a possible indicator of the functional position of species in the humification process. Differences in δ13C were also observed between wood-feeding and soil-feeding forms.
3. High values of δ15N in soil-feeding termites suggest that nitrogen fixation is of little importance in these species.
4. A wide range of isotope effects (the difference in isotope ratios between termites and their diet) was observed for both nitrogen (Δδ15N = –1.6 to + 8.8‰) and carbon (Δδ13C = –2.2 to + 3.0‰), which suggests a diversity of nutrient acquisition mechanisms within termites and diverse relationships between termites and their intestinal micro-organisms.  相似文献   

5.
The distributions of 50 species of termites across five habitat types in Kakadu National Park are described. Open forests are richest in species and monsoon forests are species-poor. The greatest diversity of termites is associated with infertile soils and is probably related to the enhanced role of termites in these nutrientimpoverished sites. Only the richness of livewood feeders is associated with disturbance in the form of water buffalo impact. Few relationships with physical characteristics of the soil were apparent. Comparisons between continents suggest that lower termites are richer in Australia than on other continents. There are fewer species of soil-feeding termites, but only two of the four subfamilies of the higher termites (Termitidae) are present in Australia. There appears to be a complementary distribution of areas of high diversity of termites and native herbivorous mammals. This may be due to the ability of termites and other invertebrate groups to exploit low fertility systems and has profound implications for the size structure of the vertebrate community.  相似文献   

6.
Morphological, mineralogical, and chemical investigations were undertaken to determine the structure and composition of the cell walls of the comb in the nest of Vespa orientalis, Paravespula germanica, and Vespacrabro. Nests of V. orientalis were from three sites having different soil types, namely, Khamra soil, Gramosol soil, and organically rich soil from the city dump in Tel Aviv. Nests of P. germanica were from areas rich in organic matter, and those of V. crabro, shipped from Austria, were similarly comprised of organic matter. Structure and composition of cell walls in the three species differed; furthermore, grain size in the combs differed from that of particles in the surrounding soil.  相似文献   

7.
Summary Centromyrmex bequaerti is a ponerine ant of the African equatorial forest which nests in the termitaries of diverse Termitinae and Macrotermitinae, occupying several chambers and galleries of the termitaries and preying on their guests. This species presents four traits convergent with termitolestic Myrmicinae: a parasitic nesting habit (but shelters directly in the cavities of the termitaries and not in the walls), blind workers, a strong dimorphism between the queens (20 mm in length) and the workers (from 5.75 to 12 mm total length) and polymorphism in the worker caste. We recorded two other traits considered as evolutionarily-derived: oligogyny, a kind of polygyny (the societies include up to 13 queens, but each queen lives in a separate cavity of the termitary) and large colon size. Behavioural observations show that there is a relationship between worker size and polyethism in this species. Although workers of all size classes participate in hunting, the media are more often engaged in this activity and the largest workers guard the nest entrance.  相似文献   

8.
Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.  相似文献   

9.

Background  

Soil-feeding termites are particularly interesting models for studying the effects of fragmentation, a natural or anthropic phenomenon described as promoting genetic differentiation. However, studying the link between fragmentation and genetics requires a method for identifying species unambiguously, especially when morphological diagnostic characters are lacking. In humivorous termites, which contribute to the fertility of tropical soils, molecular taxonomy and phylogenetic relationships are rarely studied, though mitochondrial and nuclear molecular markers are widely used in studies of pest termites. Here, we attempt to clarify the taxonomy of soil-feeding colonies collected throughout the naturally fragmented Lopé Reserve area (Gabon) and morphologically affiliated to Cubitermes sp. affinis subarquatus. The mitochondrial gene of cytochrome oxidase II (COII), the second nuclear rDNA internal transcribed spacer (ITS2) and five microsatellites were analyzed in 19 colonies.  相似文献   

10.
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host–termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.  相似文献   

11.
玉米秸秆还田培肥土壤的效果   总被引:82,自引:12,他引:82  
辽北地区玉米根茬还田、秸秆直接还田或间接还田的3年微区培肥试验研究结果表明,无机肥的增产效果特别明显,而施有机物料,更主要的作用是改善土壤的物理、化学性质、培肥地力,与无肥对照相比,有机无机肥料配合施用可使土壤有机质提高3.06%-27.78%,各有机物料对土壤有机质提高的顺序依次为100%秸秆>50%秸秆>土粪>牛粪>33%秸秆>根茬。在含C量相等的条件下,秸秆对土壤有机质的保持和提高好于土粪,土粪好于牛粪。同时,与单施化肥比,有机无机肥料配合施用可使土壤易氧化有机质增加10.91%-20.67%,使浸提腐殖酸提高1.43%-14.28%,使结合态腐殖酸的松/紧比值提高0.07-0.19,HA/FA比值提高0.07-0.24,并且能改善土壤的N、P、K营养状况、土壤水分和土壤孔隙状况,这标志着土壤有机质活性的提高和土壤肥力状况的改善。因此,应该大力提倡玉米秸秆秋季直接还田,其最佳施入量应为当年生产量的30%-50%。  相似文献   

12.
土壤胡敏素研究进展   总被引:12,自引:0,他引:12  
张晋京  窦森 《生态学报》2008,28(3):1229-1239
土壤有机质是土壤的重要组成部分,在土壤肥力和生态环境等方面都具有重要作用.作为土壤有机质主体的腐殖物质的研究,一直受到各国学者的普遍重视.在土壤腐殖物质3组分中,以往的研究主要集中于可溶性的胡敏酸和富里酸,而对不溶性的胡敏素则较少涉及.从分离、结构和作用3个方面,综述了土壤胡敏素的研究现状和最新进展,并对今后的研究方向进行了展望,以促进胡敏素研究的继续深入开展.提出近期的研究重点主要包括:(1)比较不同分离方法获得的土壤胡敏素的差异,以达到方法上的可比性和统一性,同时提出更适宜的分离方法;(2)通过多种分析测试手段的相互补充验证,以获得对土壤胡敏素结构本质更加明确、清晰和深入的认识;(3)加强土壤胡敏素肥力和环境作用的研究,尤其应重视从分子水平上探明其构效关系,为生产实践和应用提供理论依据.  相似文献   

13.
Abstract Isolates of the genus Streptomyces were readily obtained from the intestines of two African species of soil-feeding termites by an aerobic explant technique using starch casein medium, and from their parent soil and mound materials by dilution plating. Discriminant analysis of the isolates, based on 44 representative characters, showed that the population derived directly from the termites was significantly different from that of the feed soil or the mound. The termite gut was considered to be a good source of unusual actinomycetes, but strains isolated under aerobic conditions are likely to be allochthons selected by the intestinal environment, which is highly alkaline and anaerobic. An anaerobic, filamentous isolate was obtained which may be a component of the prokaryotic symbiont population mediating termite digestion.  相似文献   

14.
Soil-feeding termites are abundant and play important roles in the biogeochemical processes in tropical soils. Previous studies indicated that they preferentially utilize the peptidic components of soil organic matter as a nutrient resource. Here, we determined the corresponding mineralization fluxes and elucidated other N transformation processes that occur during soil gut passage using 15N tracer techniques. Termite-based rates of N mineralization by Cubitermes umbratus and Cubitermes ugandensis in soil microcosms amended with 15NH4 + were 6.6 and 9.2 nmol N day?1 (g fresh wt)?1, which means that the soil peptides fuel about 20 and 40% of the respiratory activity of these insects. Considering the areal biomass of soil-feeding termites in humid savannahs, soil-feeding termites should mineralize about 3% of the total N in their food soil per year. In addition to producing ammonia from ingested 15NO3 ? at approximately 10% of the mineralization rate, C. umbratus also formed N2 at similar rates. The formation of labelled N2 in microcosms amended with 15NH4 + seems to be at least partially due to nitrification activity in the soil; evidence for the formation of nitrate in the posterior hindgut remains inconclusive. However, the so far unexplained increase of 15N abundance in the ammonia pools of the posterior hindgut compartments manifests additional hitherto unknown metabolic processes in this gut region. Collectively, our results not only reinforce the concept of nitrogenous soil components as an important dietary resource for soil-feeding termites, but also allow us to predict that N mineralization and nitrate ammonification activities in the termite gut should positively affect the dynamics of N in tropical soil.  相似文献   

15.
Planted silvo-pastoral systems are formed by sparing selected native trees when land is cleared for pasture establishment, or by planting selected species – often known agroforestry species – into the establishing pasture. Isolated trees within pastures and savannas are often associated with `resource islands', characterized by higher fertility and organic matter levels under the tree canopies. We here examine the processes underlying the differences in fertility and organic matter in a buffel grass (Cenchrus ciliaris L.) pasture that contained two tree species (Ziziphus joazeiro Mart., Spondias tuberosa Arruda Cam.) preserved from the native thorn forest and a planted agroforestry species (Prospois juliflora Swartz D.C). The objective is to distinguish effects of soil variability from those induced by the presence of trees or the planting of pasture. The 13C signatures of the original (largely C3) vegetation, the preserved and planted trees, and the planted C4 grass were used to distinguish the provenance of organic matter in the top soil (0–15 cm). This allowed the conclusion that all trees maintained C3 derived C at the original thorn forest level, while lower levels under pasture were due to mineralisation of organic matter. The net rates of forest-derived C loss under pasture varied with soil type amounting to between 25 and 50% in 13 years after pasture establishment. Only on Alfisol, C inputs from the pasture compensated for the C3-C losses. Analysis of organic and inorganic P fractions indicated Z. joazeiro and P. juliflora enriched the soil under their canopy with P, whereas S. tuberosa had no positive effect on fertility. A combination of ANOVA and spatial analysis and mapping was used to show vegetation effects.  相似文献   

16.
Soil biota activity in arid lands is often limited by the availability of water and organic matter. We experimentally explored whether small changes in soil moisture affect the activity of soil biota in external refuse dumps of the leaf‐cutting ant Acromyrmex lobicornis, one of the most important sources of organic matter in a semi‐arid land of north‐western Patagonia. We estimated CO2 consumption in refuse dumps and in adjacent, non‐nest soil samples at two moisture levels, after 48 and 72 h. Soil biota activity, estimated by respiration rates, was up to 160 times greater in refuse dumps than in adjacent, non‐nest soils. Activity of soil biota in non‐nest soil did not change through time and was not affected by moisture. Conversely, soil biota increased their activity in refuse dump samples only at high moisture condition after 72 h. As the activity of microorganisms is key for soil nutrient generation and availability, refuse dumps may be considered as ‘islands of fertility’ for plants. This effect may be especially important after sporadic spring rainfalls, when the beneficial effect of refuse dumps on soil biota is enhanced. In addition, as refuse dumps generate several times more CO2 than non‐nest soils, nest areas may be considered also as hot spots of CO2 emissions. These results illustrate the potential importance of ant nests for nutrient cycling, maintenance of plant cover and carbon balance in arid ecosystems.  相似文献   

17.
Soil structure stability was studied in every diagnostic horizons of six soil types (Haplic Chernozem, Greyic Phaeozem, two Haplic Luvisols, Haplic Cambisol, Dystric Cambisol) using different techniques investigating various destruction mechanisms of soil aggregates. Soil aggregate stability, assessed by the index of water stable aggregates (WSA), varied depending on the organic matter content, clay content and pHKCl. The presence of clay and organic matter coatings and fillings, and presence of iron oxides in some soils increased stability of soil aggregates. On the other hand periodical tillage apparently decreased aggregate stability in the Ap horizons. Coefficients of aggregate vulnerability resulting from fast wetting (KV 1) and slow wetting (KV 2) tests showed similar trends of the soil aggregate stability as the WSA index, when studied for soils developed on the similar parent material. There was found close correlation between the WSA index and the KV 1 value, which depended also on the organic matter content, clay content and pHKCl. Less significant correlation was obtained between the WSA index and the KV 2 value, which depended on the organic matter content and clay content. Coefficients of vulnerability resulting from the shaking after pre-wetting test (KV 3) showed considerably different trends in comparison to the other tests due to the different factors affecting aggregate stability against the mechanical destruction. The KV 3 value depended mostly on cation exchange capacity, pHKCl and organic matter content.  相似文献   

18.
Paul Ferrar 《Oecologia》1982,52(1):139-146
Summary Cellulose toilet roll baits were exposed in three different subhabitats at Nylsvley Reserve, northern Transvaal, and respective attacks by up to eight species of termites are described and illustrated. In broad-leaved savanna attack was principally by Microcerotermes, a slow feeder that attacked rolls throughout the year, finding about half the rolls exposed each season. In Acacia savanna attack was largely by Microtermes, a fast feeder active only at wetter times of year. In open, grassy areas there was relatively little attack, except sporadically by Macrotermes which consumed whole rolls within a day or two. Bush-fires delayed initial attack on rolls, perhaps because reduced surface litter gave less protection to soil. The amount of each roll eaten during the trials is shown in histograms; it was consistently greater in Acacia than in broad-leaved savanna. The soil-feeding termites Aganotermes and Promirotermes were attracted during the wet season to the undersides of rolls, perhaps as a source of organic-rich soil (or possibly of water).  相似文献   

19.
Stable (13C and 15N) and radio- (14C, 137Cs and 210Pb) isotopes were determined for termites that have been sampled from a dry evergreen forest in Thailand. A wood-feeding termite, Microcerotermes crassus, was separated from soil-feeders: Termes propinquus, Termes comis and Dicuspiditermes makhamensis by 13C and 15N values. The Termes group in Thailand had less diverse values in 13C and 15N than those in Australia, where the feeding habits of the Termes group are more diverse. Other soil-feeding termites produced similar 13C values, but a larger range in 15N values. 14C-percent modern carbon (pMC) values suggest that the soil-feeding termites used younger carbon than the wood-feeding termites, and this was consistent with the termites from Cameroon, central Africa. Values of 13C and 14C-pMC indicate that surface soil was used by a soil-feeding termite, D. makhamensis, in making the nest mounds, and deeper soil (10–30 cm) by a fungus-growing termite, Macrotermes carbonarius. 210Pb and 137Cs were scarcely incorporated into the termites, although 214Pb was recovered from the workers. The results suggest that stable- and radioisotopes are useful in the study of detritivorous animals, organic matter decomposition and ecosystem engineering.Takuya Abe - deceased.  相似文献   

20.
The effects of usual or recommended rates of application of five organic amendments (24 t/ha yr of MSW compost, sewage sludge, and ovine manure, 2.4 t/ha yr of commercial vermicompost, and 100 l/ha yr of a commercial humic acids solution) on the soil contents of organic matter, total humified substances, humic acids, carbohydrates and microbial gums, and the structural stability of aggregates were investigated. Four and five years after the beginning of the experiment, significant increments in most of the parameters studied were found after the application of organic residues, whereas the two commercial amendments did not produce any significant change, suggesting that rates recommended by the producers and imposed by their high prices are too low to be useful. MSW compost yielded the highest increases, even if the amount of organic matter applied as ovine manure was very similar. Organic matter and carbohydrates appeared to be the parameters most closely related to soil aggregate stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号