首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth parameters and radiosensitivity of normal rat intestinal epithelial cells, IEC-17, were studied. The cells were cultured by standard methods and exposed to an array of doses (1-12 Gy) of 250 kVp X rays. The survival curves generated exhibited no initial shoulder and were bimodal. The Do of the first component was about 0.2 Gy and the second component. 5.0 Gy. The ability of this cell line to repair sublethal lesions was examined by fractionation studies; repair was completed within 60 min after the first dose. When Chinese hamster ovary (CHO) cells were grown under the same conditions used for the IEC-17 cells and then irradiated with single doses, a typical survival curve with a Do of 1.4 Gy was obtained. The survival curves obtained for the IEC-17 cell line are consistent with the response of a morphologically distinct single population containing two functionally separate types of cells.  相似文献   

2.
Effects of irradiation on intestinal cells in vivo and in vitro   总被引:3,自引:0,他引:3  
The effects of irradiation on intestinal epithelial cells were analyzed in vivo and in vitro. The in vivo study was carried out on the rat small intestine and for the in vitro study the intestinal crypt cell-line IEC-6 was used. Rat intestine and IEC-6 cells were irradiated with X-ray doses ranging between 1-16 Gy. Energy-dispersive X-ray microanalysis was used for detection of the elemental changes in the cells. Cell morphology was investigated in the scanning electron microscope, DNA-synthesis by autoradiography of 3H-thymidine incorporating nuclei and proliferation by cell counting. Our results indicate that in vivo, in the crypt cells, the increasing doses of irradiation led to increased sodium and lowered potassium and phosphorus concentrations. Corresponding ion shifts were found in the irradiated IEC-6 cells. Cells continued to proliferate up to the dose of 8 Gy, although the proliferation rate became lower with increasing dose of irradiation. The increasing dose of irradiation significantly reduced DNA-synthesis (16 Gy decreased DNA-synthesis by 50%) which resulted in a complete inhibition of cell proliferation. Analysis of goblet cells also showed characteristic radiation-dependent elemental changes. Scanning electron microscopical investigation of cells in culture revealed that most of the control cells were flat and had rather smooth cell membranes. Irradiation led to the appearance of numerous different membrane manifestations (microvilli of varying length and distribution, and blebs). Frequency of differences in the topology of the cells was related to the dose of irradiation. Our study clearly demonstrates that even low doses of irradiation cause changes in the ionic composition of the cells and inhibit DNA-synthesis and cell proliferation. The effects observed in the crypt cells in vivo were the same as in the intestinal cell line in vitro, which indicates that IEC-6 cells can be used for investigation of side effects of radiation to the abdomen.  相似文献   

3.
To determine whether different fractionation schemes could simulate low-dose-rate irradiation, ovarian cells of the carcinoma cell lines A2780s (radiosensitive) and A2780cp (radioresistant) and AG1522 normal human fibroblasts were irradiated in vitro using different fraction sizes and intervals between fractions with an overall average dose rate of 0.53 Gy/h. For the resistant cell line, the three fractionation schemes, 0.53 Gy given every hour, 1.1 Gy every 2 h, and 1.6 Gy every 3 h, were equivalent to low dose rate (0.53 Gy/h). Two larger fraction sizes, 2.1 Gy every 4 h and 3.2 Gy every 6 h, resulted in lower survival than that after low-dose-rate irradiation for the resistant cell line, suggesting incomplete repair of radiation damage due to the larger fraction sizes. The survival for the sensitive cell line was lower at small doses, but then it increased until it was equivalent to that after low-dose-rate irradiation for some fractionation schemes. The sensitive cell line showed equivalence only with the 1.6-Gy fraction every 3 h, although 0.53 Gy every 1 h and 1.1 Gy every 2 h showed equivalence at lower doses. This cell line also showed an adaptive response. The normal cell line showed a sensitization to the pulsed-dose-rate schemes compared to low-dose-rate irradiation. These data indicate that the response to pulsed-dose-rate irradiation is dependent on the cell line and that compared to the response to low-dose-rate irradiation, it shows some equivalence with the resistant carcinoma cell line, an adaptive response with the parental carcinoma cell line, and sensitization with the normal cells. Therefore, further evaluation is required before implementing pulsed-dose-rate irradiation in the clinic.  相似文献   

4.
Measurement of the radiation sensitivity of chromosomes was used to address the influence of cell cycle distribution and of DNA content and ploidy on radiation responses in seven human squamous cell carcinoma cell lines. The cell lines varied about twofold in DNA content and chromosome number, and the X-ray sensitivities (D0) of the lines ranged from 1.1 to 2.7 Gy. The more resistant cell lines (D0 greater than 1.8 Gy) had faster growth rates and larger proportions of cells in S phase in asynchronous cultures. Aberration frequencies were measured in cells irradiated in G1 and G2 phase. The more resistant lines had fewer induced aberrations in both phases than did sensitive lines, implying that they were more resistant to radiation in both of these cell cycle phases. Therefore, while the larger S-phase population seen in the resistant cell lines probably contributes to the resistant phenotype, it cannot explain all of the intrinsic differences in radiation sensitivity. There was no relationship between DNA content and radiation sensitivity as measured by the cell survival assay or the induction of chromosome aberrations, although cells with larger DNA contents tended to have more chromosome damage per cell at equitoxic doses.  相似文献   

5.
Chinese hamster ovary cells were arrested in the G2 phase of the cell cycle by X-irradiation. When subsequently treated with 5 mM caffeine the arrested population progressed into mitosis as a synchronous cohort where it was harvested by mitotic cell selection. This procedure provides a means to isolate cell populations treated in G2, for the investigation of G2 arrest. Comparisons were made of the number of cells retrieved from G2 arrest with the number suffering arrest, as determined by flow cytometry and by matrix algebraic simulations of irradiated cell progression. The retrieved population was not significantly less than expected for doses up to 3.5 Gy, indicating that the retrieval process does not favour the isolation of any population subset below this dose. Cell populations retrieved from arrest at varying intervals (0-3 h) after irradiation (0-3.5 Gy) showed an increase in survival with increase in interval, consistent with repair of potentially lethal damage. The repair curves (surviving fraction vs time) were each described by a single exponential. G2 cells that were brought to mitosis without a period of arrest exhibited the same radiation response as cells irradiated in mitosis.  相似文献   

6.
BACKGROUND: Nuclear texture analysis measures phenotypic changes in chromatin distribution within a cell nucleus, while the alkaline Comet assay is a sensitive method for measuring the extent of DNA breakage in individual cells. The authors aim to use both methods to provide information about the sensitivity of cells to ionizing radiation. METHODS: The alkaline Comet assay was performed on six human bladder carcinoma cell lines and one human urothelial cell line exposed to gamma-radiation doses from 0 to 10 Gy. Nuclear chromatin texture analysis of 40 features was then performed in the same cell lines exposed to 0, 2, and 6 Gy to explore if nuclear phenotype was related to radiation sensitivity. RESULTS: Comet assay results demonstrated that the cell lines exhibited different levels of radiosensitivity and could be divided into a radiosensitive and a radioresistant group at >6 Gy. Using stepwise discriminant analysis, a subset of important nuclear texture features that best discriminated between sensitive and resistant cell lines were identified A classification function, defined using these features, correctly classified 81.75% of all cells into their radiosensitive or radioresistant groups based on their pretreatment chromatin phenotype. Posttreatment chromatin changes also varied between cell lines, with sensitive cell lines showing a relaxed chromatin conformation following radiation, whereas resistant cell lines exhibited chromatin condensation. CONCLUSIONS: The authors conclude that the alkaline Comet assay and nuclear texture methodologies may prove to be valuable aids in predicting the response of tumor cells to radiotherapy.  相似文献   

7.
8.
To systematically study the selection of radioresistant cells in clinically advanced breast cancer, a model system was generated by treating MDA-MB231 breast cancer cells with fractionated gamma radiation. A clonogenic assay of the surviving cell populations showed that 2-6 Gy per fraction resulted in a rapid selection of radioresistant populations, within three to five fractions. Irradiation with additional fractions after this initial increase did not increase the radioresistance of the surviving population significantly. Doses of 0.5 and 8 Gy per fraction were not effective in selecting radioresistant cells. To further determine the cause of the changes in radiosensitivity, 15 clones were isolated from the cell populations treated with 40 or 60 Gy with 2 or 4 Gy per fraction, respectively, and were analyzed for radiosensitivity. The average D(10) for these clones was 6.75 +/- 0.36 Gy, which was higher than that for the parental cell population (D(10) = 6.0 +/- 0.2 Gy). The operation of cell cycle checkpoints and the doubling time were similar for both the nonirradiated parental population and the isolated radioresistant subclones. In contrast, a decrease in the apoptotic potential was correlated (r = 0.7, P < 0.01) with increased survival after irradiation, suggesting that apoptosis is an important factor in determining radioresistance under our experimental conditions. We also isolated several subclones from the nonirradiated parental cell population and analyzed them to determine their radiosensitivity after fractionated irradiation. Ten fractions of 4 Gy (40 Gy in total) did not result in a significant increase in the radioresistance of these subclones compared to the irradiated cell populations. The possible mechanisms of the increased radioresistance after fractionated irradiation are discussed.  相似文献   

9.
Cell cycle perturbation after irradiation was studied in five cell lines transfected with oncogenes. Two immortalized, radio-sensitive cell lines with D0s of 1.06 and 1.08 Gy were compared to three radioresistant cell lines with D0s of 1.68-2.17 Gy. The sensitive cell lines were transfected with the v-myc or c-myc oncogenes, the resistant cell lines with the v-myc plus H-ras oncogenes. Exponentially growing populations were exposed to 5, 10, or 15 Gy of orthovoltage radiation. The percentage of cells in each phase of the cell cycle was determined at various times after irradiation using flow cytometry. All cell lines underwent a dose-dependent arrest in G2 phase after irradiation, but the resistant cell lines underwent a significantly longer arrest in G2 phase after irradiation than did the sensitive cell lines. In conjunction with other results from our laboratories, we suggest that this difference in G2 arrest may be the basis for the increased resistance of cells transfected with oncogenes to irradiation.  相似文献   

10.
Adriamycin-resistant variants derived from V79 Chinese hamster cells were examined for their radiation response properties. A stable resistant cell line (77A) demonstrated a significant reduction in the extrapolation number of the single-dose radiation survival curve. Second-step mutants from 77A cells exhibited a spectrum of radiation response states including decreased D0 values and large extrapolation numbers. A highly Adriamycin-resistant line (LZ) was found to be radiation sensitive with increased capacity for the accumulation of sublethal radiation injury. LZ cells are known to contain double-minute chromosomes and an amplified gene for the multidrug phenotype and to exhibit multidrug resistant properties. These cells require the presence of Adriamycin in their growth medium to maintain their pleiotropic characteristics. LZ cells became more resistant to radiation following reversion to an intermediate Adriamycin response as the consequence of growth in Adriamycin-free medium. Reverted cells also lost their large capacity for sublethal damage. It is suggested that detailed study of these mutants may provide insight into the identification of radiation-sensitive sites and their relationship to the genetic changes characterizing Adriamycin-resistant cell lines.  相似文献   

11.
中子属于高传能线密度电离辐射,能产生比κ射线更为严重的放射损伤,肠上皮对中子辐射高度敏感,迄今未见有关中子辐射致肠上皮细胞损伤中PI3K对NF-κB信号通路调控的研究报道.本研究旨在探讨中子照射后肠上皮细胞中PI3K对NF-κB信号通路的调控及其在中子辐射致肠上皮细胞损伤中的作用.选取肠上皮细胞系-6(intestinal epithelial cell No.6,IEC-6)进行传代培养,随机分为对照组、4Gy中子照射组和4Gy中子照射+LY294002处理组,照射组和LY294002处理组细胞采用4Gy中子均匀照射,LY294002处理组细胞在照前24h给予终浓度为10κmol/L的LY294002,各组于照射后6和24h采用MTT比色法、流式细胞术和免疫印迹(Western blot)方法检测IEC-6细胞增殖活力、凋亡与坏死率以及NF-κB信号通路相关分子NF-κB(p65),IKKκ和IκBκ的表达变化.研究发现,4Gy中子照射后6和24h,IEC-6细胞增殖活力下降,凋亡和坏死率增加;应用LY294002后IEC-6细胞增殖活力较照射组明显下降,IEC-6细胞凋亡和坏死率较照射组增加.4Gy中子照射后6和24h,IEC-6细胞NF-κB(p65)和IKKκ表达升高,IκBκ表达降低;应用LY294002后NF-κB(p65)和IKKκ表达降低,IκBκ表达升高,表明4Gy中子照射可引起IEC-6细胞增殖活力下降,凋亡和坏死率增加;PI3K可激活NF-κB信号通路,对中子辐射IEC-6细胞损伤发挥保护作用.  相似文献   

12.
Exogenous prostaglandins (PGs) have been shown to protect gastrointestinal mucosa, liver, and pancreas from several injurious agents, including the PG inhibitor, indomethacin. Previous studies from this laboratory showed exogenous administration of 16,16-dimethyl (dm) PGE2 also protected mouse intestinal stem cells from radiation injury. The present study extended that observation and demonstrated that PGs given to B6D2F1 mice 1 hr before irradiation increased the shoulder of the intestinal clonogenic cell survival curve. The D0 increased from 1.10 + 0.09 to 1.58 + 0.10 Gy. PGs increased the LD50/6 from 16.3 + 0.41 (95% confidence limits) in controls to 20.25 + 0.55 Gy. The 16,16-dm PGE2 increased the hematopoietic CFU-S survival in a qualitatively similar way; the extrapolation number (n) was increased from 1.03 (0.89-1.20) to 1.40 (1.27-1.54) and the D0 increased from 0.92 (0.87-0.98) to 1.14 (1.10-1.19) Gy. A large number of human tumors secrete a variety of PGs. Our results suggest that those tumors may be, in part, protected from radiation injury.  相似文献   

13.
Chinese hamster ovary cells were synchronized at the G1/S-phase boundary of the cell cycle and pulse-labeled for 10 min with 125I-iododeoxyuridine 30 min after entering the S phase. Cell samples were harvested for freezing and 125I-decay accumulation at intervals ranging from 15 to 480 min after termination of labeling. The survival data showed a marked shift from cell killing characteristic of low-LET radiation to that more characteristic of killing by high-LET radiation with increasing intervals between DNA pulse-labeling and decay accumulation. Cells harvested and frozen within 1 h after pulse-labeling yielded a low-LET radiation survival response with a pronounced shoulder and a large D0 of up to 0.9 Gy. With longer chase periods the shoulder and the D0 decreased progressively, and cells harvested 5 h after pulse-labeling or later exhibited a high-LET survival response (D0: 0.13 Gy). Two interpretations for these findings are discussed. (1) If DNA is the sole target for radiation death, the results indicate that DNA maturation increases radiation damage to DNA or reduces damage repair. (2) If radiation cell death involves damage to higher-order structures in the cell nucleus, the findings suggest that newly replicated DNA is not attached to these structures during the initial low-LET period, but 125I starts to induce high-LET radiation effects as labeled DNA segments become associated with the target structure(s). On balance, or data favor the latter interpretation.  相似文献   

14.
15.
In vitro effects of radiation were studied in two permanent cell lines (AGS and SII) from two patients with adenocarcinoma of the stomach and three permanent sublines from each cell line. Radiation survival parameters for AGS and SII parent cell lines and sublines were determined after in vitro irradiation of their cells with 0.5 to 10 Gy of 60Co gamma rays. The AGS and SII cell lines had different growth properties, DNA contents and radiation survival curves. Surviving fractions of SII parent cells (76 chromosomes) after 2.0 and 10 Gy were 1.22 and 17.8 times greater, respectively, than values for AGS parent cells (47 chromosomes). Sensitivities (D0) were 1.08 and 1.45 Gy for AGS and SII parent lines, respectively. The D0 values for AGS parent cells and sublines were similar (1.01 to 1.08 Gy), but SII parent cells and sublines had D0 values of 1.45, 1.36, 1.37 and 1.12 Gy (for SII-A). Also, the SII parent cells had survival fractions after 2.0 and 10 Gy that were 1.3 and 11.3 times greater, respectively, than values for the SII-A cells. These data show differences in radiation responses among stomach cancer cell lines and sublines that may relate to DNA content, but there was no consistent correlation between radiation response and a particular cell characteristic.  相似文献   

16.
Gao Z  Zhang Q  Han Y  Cheng X  Lu Y  Fan L  Wu Z 《Cytotherapy》2012,14(3):267-273
Background aimsEffective therapy for radiation-induced intestinal injury is currently unavailable. Mesenchymal stromal cells (MSC) are expected to be useful in repairing intestinal damage caused by irradiation. We determined whether the MSC-derived bioactive components could protect radiation-induced small intestine injury in miceMethodsHuman umbilical cord (UC)-derived MSC were isolated, expanded and exposed to hypoxic conditions in vitro. The hypoxia-conditioned medium was ultrafiltrated with a 3-kDa molecular weight cut-off to prepare the high molecular weight fraction (HMWF). The effect of HMWF on the viability of irradiated rat intestinal epithelial cells (IEC-6) was examined by MTT(methyl thiazolyl tetrazolium) assay. HMWF was also delivered to BALB/C male mice by tail intravenous injection immediately after receiving local abdominal irradiation at a selected dose of 10 Gy. Animal body weight, survival and diarrhea were monitored for 30 days. The improvement of mice intestine structure, including epithelium thickness and villus height, was examined by histologyResultsHMWF enhanced the viability of irradiated IEC-6 cells in vitro. Repeated infusion of HMWF for 7 days immediately after abdominal irradiation of 10 Gy (60Coγ-ray) increased the survival rate, decreased diarrhea occurrence and improved the small intestinal structural integrity of irradiated miceConclusionsMSC-derived bioactive components could be a novel therapeutic approach for the treatment of radiation-induced injury.  相似文献   

17.
In the CBA mouse testis about 10% of the stem cell population is highly resistant to neutron irradiation (D0, 0.75 Gy). Following a dose of 1.50 Gy these cells rapidly increase their sensitivity towards a second neutron dose and progress fairly synchronously through their first post-irradiation cell cycle. From experiments in which neutron irradiation was combined with hydroxyurea it appeared that in this cycle the S-phase is less radiosensitive (D0, 0.43 Gy) than the other phases of the cell cycle (D0, 0.25 Gy). From experiments in which hydroxyurea was injected twice after irradiation the speed of inflow of cells in S and the duration of S and the cell cycle could be calculated. Between 32 and 36 hr after irradiation cells start to enter the S-phase at a speed of 30% of the population every 12 hr. At 60 hr 50% of the population has already passed the S-phase while 30% is still in S. The data point to a cell cycle time of about 36 hr, while the S-phase lasts 12 hr at the most.  相似文献   

18.
19.
Interleukin-6 (IL-6) has been shown to rescue enterocytes from hypoxia-induced apoptosis when given orally following hemorrhagic shock. In vitro models using an intestinal epithelial cell line (IEC-6) cultured with lipopolysaccharide (LPS) under low O2 conditions, to mimic intestinal conditions, show that these cells also undergo apoptosis, which can be reduced by subsequent culture with IL-6. To examine further the mechanisms of rescue, we cultured normal rat intestinal epithelial cells (IEC-6) under both normoxic and hypoxic conditions and analyzed their responses to LPS and IL-6. We showed that IEC-6 expressed IL-6 receptor on its surface. Further, IEC-6 cells could be rescued from hypoxia-induced apoptosis by co-culture with IL-6. RNase protection assay (RPA) examination revealed that under hypoxic conditions, IEC-6 cells that were resistant to apoptosis showed reduced fas expression and increased bcl-2 expression after co-culture with LPS+IL-6.  相似文献   

20.
In the gastrointestinal mucosa, cell migration plays a crucial role in the organization and maintenance of tissue integrity but the mechanisms involved remain incompletely understood. Here, we used small-interfering RNA (siRNA)-mediated depletion of focal adhesion kinase (FAK) protein to determine the role of FAK in wound-induced migration and cytoskeletal organization in the non-transformed intestinal epithelial cells IEC-6 and IEC-18 stimulated with the G protein-coupled receptors (GPCR) agonist lysophosphatidic acid (LPA). Treatment of these cells with FAK siRNA substantially reduced FAK expression, but did not affect the expression of proline-rich tyrosine kinase 2 (Pyk2). Knockdown of FAK protein significantly inhibited LPA-induced migration of both IEC-18 and IEC-6 cells. LPA induced reorganization of actin and microtubule cytoskeleton in the leading edge was largely inhibited in FAK siRNA-transfected IEC-18 cells. Interestingly, in contrast to the FAK-/- cells, which exhibit an increased number of prominent focal adhesions when plated on fibronectin, FAK knockdown IEC-18 cells exhibited dramatically decreased number of focal adhesions in response to both LPA and fibronectin as compared with the control cells. We also used siRNAs to knockdown Pyk2 expression without reducing FAK expression. Depletion of Pyk2 did not prevent LPA-induced migration or cytoskeletal reorganization in IEC-18 cells. In conclusion, our study shows that FAK plays a critical role in LPA-induced migration, cytoskeletal reorganization, and assembly of focal adhesions in intestinal epithelial cells whereas depletion of Pyk2 did not interfere with any of these responses elicited by LPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号