首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The goal of the present study was to develop a competitive PCR assay to measure changes in the expression of endothelial nitric oxide synthase (eNOS) mRNA levels throughout the canine vascular tree. A partial sequence of canine eNOS cDNA (1.86 kb), inducible NOS (1.95 kb), and neuronal NOS (1.16 kb) was cultured from canine aortic endothelial cells, LPS-treated canine splenic vein endothelial cells, and from canine left ventricle, respectively. Competitor eNOS cDNA (eNOS-C) was constructed via recombinant PCR. Thus, with the use of a standard curve competitive PCR with eNOS-C, the amount of eNOS mRNA in 500 ng of total RNA was greatest in the circumflex > right coronary artery > left anterior descending coronary artery > aorta. The isolation of coronary microvessels from the left ventricle was associated with an enrichment of endothelial cell markers such as eNOS, von Willebrand factor, and caveolin-1, an observation supported by the detection of up to 15-fold higher levels of eNOS mRNA in coronary microvessels relative to the larger arteries. The ability to quantify changes in eNOS mRNA levels throughout the canine vasculature should provide greater insight into the molecular mechanisms of how this gene is regulated in physiological and pathophysiological states.  相似文献   

3.
4.
组胺对肺动脉内皮细胞一氧化氮合酶基因表达的影响   总被引:3,自引:1,他引:3  
Lu DQ  Li HG  Ye H  Ye SQ  Jin S  Wang DX 《生理学报》2004,56(3):288-294
本实验研究了组胺对原代培养的肺动脉内皮细胞一氧化氮合酶(nitric oxidCsynthase,NOS)基因表达的影响及分子机制。采用RT-PCR和免疫印迹技术分别检测mRNA和蛋白质的表达水平,用荧光素酶报告基因实验检测eNOS基因转录起始点上游长1.6-kb的启动子活性,用硝酸还原酶法检测NO的产量。结果发现,组胺增强eNOS表达,呈浓度和时间依赖性,10μmol/L组胺处理肺动脉内皮细胞24h可使eNOS mRNA和蛋白质的表达达到高峰,eNOS mRNA水平为正常对照组的160.8±12.2%(P<0.05),蛋白质水平为正常对照组的136.2±11.2%(P<0.05)。特异性CaMK Ⅱ抑制剂KN-93可抑制组胺的这一效应,表明组胺可通过激活CaMK Ⅱ增强肺动脉内皮细胞eNOS基因的表达。报告基因实验表明,10μmol/L组胺处理24h后肺动脉内皮细胞eNOS基因启动子的活性增强,为正常对照组的148.2±33.7%(P<0.05)。组胺可使肺动脉内皮细胞产生NO增加。这些结果表明组胺在转录水平增强肺动脉内皮细胞eNOS基因的表达,并使细胞产生NO增加,这可能是组胺调节肺血管张力的机制之一。CaMK Ⅱ可能是组胺增强肺动脉内皮细胞eNOS基因表达的途径之一。  相似文献   

5.
运用逆转录-多聚酶联反应(RT-PCR)、鞘内注射和反义技术,研究脊髓水平一氧化氮(NO)对大鼠吗啡戒断反应和脊髓及脑干NMDA1A受体mRNA(NMDA1AR mRNA)表达的影响。结果表明,鞘内注射NOS反义寡核苷酸能明显减轻吗啡戒断反应,且脑型NOS(nNOS)反义寡苷酸的作用强于内皮型NOS(eNOS)反义寡核苷酸,吗啡依赖大鼠脊髓和脑干NMDA1AR mRNA表达增加,纳洛酮催促戒断,使其进一步增加;鞘内注射nNOS反义寡核苷酸,能明显抑制吗啡戒断大鼠脊髓和脑干NMDA1AR mRNA表达的增加;eNOS反义寡核苷酸也可抑制吗戒断大鼠脊髓NMDA1AR mRNA表达的增加,但作用弱于nNOS反义寡核苷酸,对脑干NMDA1AR mRNA表达无明显影响,上述结果提示:脊髓水平NO参与介导吗啡戒断反庆和NMDA受体表达的调控。  相似文献   

6.
7.
8.
9.
Nitric oxide (NO), produced by endothelial (e) nitric oxide synthase (NOS), is a critical mediator of vascular function and growth in the developing lung. Pulmonary eNOS expression is diminished in conditions associated with altered pulmonary vascular development, suggesting that eNOS may be modulated by changes in pulmonary artery endothelial cell (PAEC) growth. We determined the effects of cell growth on eNOS expression in cultured ovine fetal PAEC studied at varying levels of confluence. NOS enzymatic activity was sixfold greater in quiescent PAEC at 100% confluence compared with more rapidly replicating cells at 50% confluence. To determine if there is a reciprocal effect of NO on PAEC growth, studies of NOS inhibition or the provision of exogenous NO from spermine NONOate were performed. Neither intervention had a discernable effect on PAEC growth. The influence of cell growth on NOS activity was unique to pulmonary endothelium, because varying confluence did not alter NOS activity in fetal systemic endothelial cells. The effects of cell growth induced by serum stimulation were also evaluated, and NOS enzymatic activity was threefold greater in quiescent, serum-deprived cells compared with that in serum-stimulated cells. The increase in NOS activity observed at full confluence was accompanied by parallel increases in eNOS protein and mRNA expression. These findings indicate that eNOS gene expression in fetal PAEC is upregulated during cell quiescence and downregulated during rapid cell growth. Furthermore, the interaction between cell growth and NO in the PAEC is unidirectional.  相似文献   

10.
11.
12.
Increased vascular nitric oxide (NO) production has been implicated in the pathogenesis of the hyperdynamic circulation in liver cirrhosis. This study investigated the expression of three isoforms of NO synthase (NOS) in rat cirrhotic livers. Cirrhosis was induced by chronic bile duct ligation (BDL). NOS enzyme activity was assessed by L-citrulline generation. Competitive RT-PCR was performed to detect the mRNA levels of NOS. In situ hybridization was done to localize NOS mRNA. Protein expression of NOS was evaluated by Western blotting and immunohistochemistry. The L-citrulline assay showed that constitutive NOS (cNOS) enzymatic activity was decreased, while inducible NOS (iNOS) activity was increased in BDL livers. Both endothelial NOS (eNOS) and neuronal NOS (nNOS) mRNA were detected in BDL and sham rats, but with enhanced expression in BDL rats. eNOS protein was redistributed with less expression in sinusoidal endothelial cells, but the total levels in liver were not changed. nNOS was induced in hepatocytes of BDL rats, in contrast to only a weak signal observed around some blood vessels in sham livers. Intense mRNA and protein expression of iNOS was induced in livers of BDL rats and was localized in hepatocytes, with no or a negligible amount in control livers. In conclusion, iNOS was induced in cirrhotic liver with its activity increased. In contrast, cNOS activity was impaired, regardless of unchanged eNOS protein levels and enhanced nNOS expression. These results suggest that all three types of NOS have a role in cirrhosis, but their expression and regulation are different.  相似文献   

13.
14.
15.
Decreased availability of arginine and impaired production of NO (nitric oxide) have been implicated in the development of endothelial dysfunction. Citrulline formed by the NOS reaction is recycled to arginine by the citrulline-NO cycle, which is composed of NOS, argininosuccinate synthetase (AS), and argininosuccinate lyase. Therefore, we investigated the alterations of these enzymes in the aorta of streptozotocin (STZ)-induced diabetic rats. eNOS and AS mRNAs were increased by three- to fourfold 1-2 weeks after STZ treatment and decreased at 4 weeks. AL mRNA was weakly induced. Induction of eNOS and AS proteins was also observed. Cationic amino acid transporter (CAT)-1 mRNA remained little changed, and CAT-2 mRNA was not detected. The plasma nitrogen oxide levels were increased 1-2 weeks after STZ treatment and decreased at 4 weeks. Transforming growth factor-beta1 (TGF-beta1) mRNA in the aorta was also induced. TGF-beta1 induced eNOS and AS mRNAs in human umbilical vein endothelial cells but inhibited the proliferation of HUVEC. These results indicate that eNOS and AS are coinduced in the aorta in early stages of STZ-induced diabetic rats and that the induction is mediated by TGF-beta1. The results also suggest that TGF-beta1 works antiatherogenically at early stages of diabetes by increasing NO production, whereas prolonged elevation of TGF-beta1 functions atherogenically by inhibiting endothelial cell growth.  相似文献   

16.
17.
18.
19.
This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.  相似文献   

20.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号