首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The l-thyroxine binding site in human serum thyroxine-binding globulin was investigated by affinity labeling with N-bromoacetyl-l-thyroxine (BrAcT4). Competitive binding studies showed that, in the presence of 100 molar excess of BrAcT4, binding of thyroxine to thyroxine-binding globulin was nearly totally abolished. The reaction of BrAcT4 to form covalent binding was inhibited in the presence of thyroxine and the affinity-labeled thyroxinebinding globulin lost its ability to bind thyroxine. These results indicate BrAcT4 and thyroxine competed for the same binding site. Affinity labeling with 2 mol of BrAcT4/mol of thyroxine-binding globulin resulted in the covalent attachment of 0.7 mol of ligand. By amino acid analysis and high voltage paper electrophoresis, methionine was identified as the major residue labeled (75%). Lysine, tyrosine, and histidine were also found to be labeled to the extent of 8, 8, and 5%, respectively.  相似文献   

2.
The influence of pH and long-chain fatty acids on the interaction between aflatoxin B1 and human albumin was investigated by fluorescence spectroscopy. Both the binding of aflatoxin B1 to albumin and the fluorescence of albumin-bound aflatoxin are pH-dependent over the pH range of 6-9.5. The data indicates that the carcinogen has a higher affinity for the basic(B) than for the neutral(N) conformation of human albumin. Palmitic, stearic and oleic acids up to a molar ratio of 2 over albumin, increases the binding strength of aflatoxin B1 by means of an allosteric mechanism. Furthermore, the pH-dependence of the aflatoxin-albumin interaction is affected by the presence of oleic acid by narrowing the pH range over which the dependence occurs. At molar ratios of oleic acid to albumin in excess of 4.25 at pH6, 3.1 at pH7.4 and 2.4 at pH9 cause a decrease in aflatoxin B1 fluorescence as a result of reduced binding to albumin.  相似文献   

3.
Fatty acid requirement of Treponema denticola and Treponema vincentii   总被引:1,自引:0,他引:1  
Treponema denticola and Treponema vincentii were cultured in a medium supplemented with either 0.2 or 0.4% (w/v) alpha globulin in place of serum. The active factor(s) in alpha globulin was stable at pH 7.0 to autoclaving and was nondialyzable. Extraction of lipids from alpha globulin showed that both protein and lipid, supplied by the alpha globulin, were required for maximal growth of these two oral treponemes. The lipid component was investigated by adding sodium salts of long-chain fatty acids to the basal medium supplemented with 0.4% delipified alpha globulin. The lipid component of alpha globulin was replaced by either oleic acid (cis-18:1(9)) or by elaidic acid (trans- 18:1 (9)0. No other saturated or unsaturated fatty acid tested could support good growth. Tween 80 (polysorbitan monooleate) was the only Tween compound able to support maximal growth of T. denticola. The cellular lipids of T. denticola, grown with oleate in broth supplemented with 0.4% delipified alpha globulin, were extracted and analyzed by gas chromatography. The principle fatty acids were myristic, pentadecanoic, and palmitic acids. Lesser amounts of oleic acid, eicosadienoic acid, and an unidentified fatty acid (retention time, 88 min) were also detected. Treponema denticola appears to be capable of limited synthesis of cellular fatty acids such as myristic, pentadecanoic, and palmitic acids from oleic acid.  相似文献   

4.
Bovine, human and rat serum albumins were defatted and palmitic acid, oleic acid and lauric acid added in various molar ratios. The binding of L-tryptophan to these albumins was measured at 20 degrees C in a 0.138 M salt solution at pH 7.4, by using an ultrafiltration technique, and analysed in terms of n, the number of available tryptophan-binding sites per albumin molecule, with apparent association constant, k. 2. n and k were 0.90 and 2.3x10(-4)M(minus-1) respectively for defatted bovine serum albumin and 0.87 and 9.7x10(-3)M(-minus-1) for human albumin. Addition of palmitic acid did not decrease n until the molar ratio, fatty acid/bovine albumin, approached and exceeded 2. The decrease in k was small and progressive. In contrast, lauric caused a marked decrease in n and k at ratios as low as 0.5. A similar distinction between the effects on n of palmitic acid and oleic acid and those of lauric acid was seen for human albumin. k for human albumin was not significantly affected by fatty acids under the conditions studied. 3. It is concluded that primary long-chain fatty acid sites interact only weakly with the tryptophan site on albumin and that inhibition of tryptophan binding occurs when secondary long-chain sites are occupied. Primary medium-chain fatty acid sites are distinct from primary long-chain sites but may be grouped with secondary long-chain sites. 4. The relationship between free and bound tryptophan in samples of rat plasma (Stoner et al., 1975) is discussed in terms of a similar but limited study of rat albumin.  相似文献   

5.
[125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.  相似文献   

6.
The product of the fadL gene (FadL) of Escherichia coli is a multifunctional integral outer-membrane protein required for the specific binding and transport of exogenous long-chain fatty acids [C12-C18]. FadL also serves as a receptor for the bacteriophage T2. In order to define regions of functional importance within FadL, the fadL gene has been mutagenized by the insertion of single-stranded hexameric linkers into the unique SalI restriction site that lies towards the 3' end of the gene and into four HpaII restriction sites distributed throughout the coding region. The five insertion mutants were classified into three groups based on their specific growth rates (alpha) in minimal media containing the long-chain fatty acid oleate (C18:1) as a sole carbon and energy source: Oleslow, alpha = 0.035-0.045; Ole +/-, alpha = 0.020-0.035; and Ole-, alpha less than or equal to 0.005 (wild-type, alpha = 0.07-0.10). The hexameric insertion at the SalI site (fadL allele termed S1; insertion after amino acid 410) conferred an Oleslow phenotype and resulted in a reduction of long-chain fatty acid transport (36% the wild-type level). This insertion mutant, however, bound oleic acid at wild-type levels and was fully functional as a receptor for the bacteriophage T2. The modified FadL-S1 protein did not have the heat-modifiable property characteristic of wild-type FadL. Insertions in the four HpaII sites (fadL alleles termed H1, H2, H3, and H5; after amino acids 41, 81, 238, and 389, respectively) resulted in all three classes of mutants. The fadL insertion mutant H5 was defective for long-chain fatty acid transport but bound oleic acid at significant levels. Together with the S1 allele, these data suggest that the carboxyl terminus of FadL is crucial for long-chain fatty acid transport. The insertion mutants H1 and H2 were defective for both oleic acid binding and transport suggesting that the amino terminus of FadL is important for long-chain fatty acid binding and transport. The fadL linker mutant H3 was defective in oleic acid binding yet had significant levels of oleic acid transport. These studies delineated for the first time different regions of the fadL gene that encode domains of FadL implicated in the binding and transport of long-chain fatty acids.  相似文献   

7.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

8.
Unesterified long-chain fatty acids strongly inhibited thyroid hormone (T3) binding to nuclear receptors extracted from rat liver, kidney, spleen, brain, testis and heart. Oleic acid was the most potent inhibitor, attaining 50% inhibition at 2.8 microM. Oleic acid similarly inhibited the partially purified receptor and enhanced dissociation of the preformed T3-receptor complex. The fatty acid acted in a soluble form and in a competitive manner for the T3-binding sites, thereby reducing the affinity of the receptor for T3. The affinity of the receptor for oleic acid (Ki) was 1.0 microM. In HTC rat hepatoma cells in culture, fatty acids added to the medium reached the nucleus and inhibited nuclear T3 binding; oleic acid being the most potent. T3 binding of the cells was reversibly restored in fresh medium free of added fatty acids. Oleic acid did not affect all the T3-binding sites in the HTC cells: one form (80%) was inhibited and the other was not and these two forms were commonly present in all rat tissues examined. Thus, fatty acids inhibited the solubilized nuclear receptor as well as a class of nuclear T3-binding sites in cells in culture.  相似文献   

9.
The affinity of purified human vitamin D-binding protein from serum (DBP) for 25-hydroxyvitamin D3 (25-OHD3) and 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] was measured in the presence of free fatty acids (FFA), cholesterol, prostaglandins and several drugs. Mono- and polyunsaturated fatty acids markedly decreased the affinity of both 25-OHD3 and 1,25-(OH)2D3 for DBP, whereas saturated fatty acids (stearic and arachidic acid), cholesterol, cholesterol esters, retinol, retinoic acid and prostaglandins (A1 and E1) did not affect the apparent affinity. Several chemicals known to decrease the binding of thyroxine to its plasma-binding protein did not affect the affinity of DBP.

The apparent affinity of DBP for both 25-OHD3 and 1,25-(OH)2D3 decreased 2.4- to 4.6-fold in the presence of 36 μM of linoleic or arachidonic acid, respectively. Only a molar ratio of FFA:DBP higher than 10,000 was able to decrease the binding of 25-OHD3 to DBP by 20%. Much smaller ratio's of FFA:DBP (25 for arachidonic and 45 for oleic acid), however, decreased the binding of 1,25-(OH)2D3 to DBP. These latter ratio's are well within the physiological range. The addition of human albumin in a physiological albumin:DBP molar ratio did not impair the inhibitory effect of linoleic acid on the binding of [3H]25-OHD3 to DBP. The binding and bioavailability of vitamin D metabolites thus might be altered by mono- and polyunsaturated but not by saturated fatty acids.  相似文献   


10.
Cerebroside, sulfatide, monoglycosyl glyceride, and ester cerebroside were isolated from frog brain and sciatic nerve, and their distribution and chemical constituents were determined. The long-chain base compositions of cerebroside, sulfatide, and ester cerebroside were unique in the presence of branched-base components (5-15% of the total bases) and in the abundance of saturated dihydroxy base components (15-45% of the total). The amount of branched long-chain bases was greater in sciatic nerve than in brain. The hexose composition of the glycolipids consisted entirely of galactose except for brain cerebroside, in which a small amount of glucose was detected. Monogalactosyl glyceride consisted of the diacyl and alkylacyl forms, in a molar ratio of 81:19 for brain and 62:38 for sciatic nerve. The fatty acid composition of glycosphingolipids was characterized by the predominance of hydroxy and nonhydroxy 24:1 acids, and the concentration of 24:0 was extremely low. The proportion of unsaturated fatty acids accounted for 80% of the total. Major fatty acids of monogalactosyl glyceride were palmitic, oleic, stearic, and palmitoleic acids; the highest concentration was that of palmitic acid. Ester cerebroside was separated into three subfractions mainly on the basis of the proportion of hydroxy and nonhydroxy components in the amide-linked fatty acids.  相似文献   

11.
The matrix metalloproteinases gelatinase A (MMP-2) and gelatinase B (MMP-9) are implicated in the physiological and pathological breakdown of several extracellular matrix proteins. In the present study, we show that long-chain fatty acids (e.g. oleic acid, elaidic acid, and cis- and trans-parinaric acids) inhibit gelatinase A as well as gelatinase B with K(i) values in the micromolar range but had only weak inhibitory effect on collagenase-1 (MMP-1), as assessed using synthetic or natural substrates. The inhibition of gelatinases depended on fatty acid chain length (with C18 > C16, C14, and C10), and the presence of unsaturations increased their inhibitory capacity on both types of gelatinase. Ex vivo experiments on human skin tissue sections have shown that micromolar concentrations of a long-chain unsaturated fatty acid (elaidic acid) protect collagen and elastin fibers against degradation by gelatinases A and B, respectively. In order to understand why gelatinases are more susceptible than collagenase-1 to inhibition by long-chain fatty acids, the possible role of the fibronectin-like domain (a domain unique to gelatinases) in binding inhibitory fatty acids was investigated. Affinity and kinetic studies with a recombinant fibronectin-like domain of gelatinase A and with a recombinant mutant of gelatinase A from which this domain had been deleted pointed to an interaction of long-chain fatty acids with the fibronectin-like domain of the protease. Surface plasmon resonance studies on the interaction of long-chain fatty acids with the three individual type II modules of the fibronectin-like domain of gelatinase A revealed that the first type II module is primarily responsible for binding these compounds.  相似文献   

12.
The effect of temperature on the binding of thyroxine and triiodothyronine to thyroxine-binding globulin has been studied by equilibrium dialysis. Inclusion of ovalbumin in the dialysis mixture stabilized thyroxine-binding globulin against losses in binding activity which had been found to occur during equilibrium dialysis. Ovalbumin by itself bound the thyroid hormones very weakly and its binding could be neglected when analyzing the experimental results. At pH 7.4 and 37 degrees in 0.06 M potassium phosphate/0.7 mM EDTA buffer, thyroxine was bound to thyroxine-binding globulin at a single binding site with apparent association constants: at 5 degrees, K = 4.73 +/- 0.38 X 10(10) M-1; at 25 degrees, K = 1.55 +/- 0.17 X 10(10) M-1; and at 37 degrees, K = 9.08 +/- 0.62 X 10(9) M-1. Scatchard plots of the binding data for triiodothyronine indicated that the binding of this compound to thyroxine-binding globulin was more complex than that found for thyroxine. The data for triiodothyronine binding could be fitted by asuming the existence of two different classes of binding sites. At 5 degrees and pH 7.4 nonlinear regression analysis of the data yielded the values n1 = 1.04 +/- 0.10, K1 = 3.35 +/- 0.63 X 10(9) M-1 and n2 = 1.40 +/- 0.08, K2 = 0.69 +/- 0.20 X 10(8) M-1. At 25 degrees, the values for the binding constants were n1 = 1.04 +/- 0.38, K1 = 6.5 +/- 2.8 X 10(8) M-1 and n2 = 0.77 +/- 0.22, K2 = 0.43 +/- 0.62 X 10(8) M-1. At 37 degrees where less curvature was observed, the estimated binding constants were n1 = 1.02 +/- 0.06, K1 = 4.32 +/- 0.59 X 10(8) M-1 and n2K2 = 0.056 +/- 0.012 X 10(8) M-1. When n1 was fixed at 1, the resulting values obtained for the other three binding constants were at 25 degrees, K1 = 6.12 +/- 0.35 X 10(8) M-1, n2 = 0.72 +/- 0.18, K2 = 0.73 +/- 0.36 X 10(8) M-1; and at 37 degrees K1 = 3.80 +/- 0.22 X 10(8) M-1, n2 = 0.44 +/- 0.22, and K2 = 0.43 +/- 0.38 X 10(8) M-1. The thermodynamic values for thyroxine binding to thyroxine-binding globulin at 37 degrees and pH 7.4 were deltaG0 = -14.1 kcal/mole, deltaH0 = -8.96 kcal/mole, and deltaS0 = +16.7 cal degree-1 mole-1. For triiodothyronine at 37 degrees, the thermodynamic values for binding at the primary binding site were deltaG0 = -12.3 kcal/mole, deltaH0 = -11.9 kcal/mole, and deltaS0 = +1.4 cal degree-1 mole-1. Measurement of the pH dependence of binding indicated that both thyroxine and triiodothyronine were bound maximally in the region of physiological pH, pH 6.8 to 7.7.  相似文献   

13.
Plasma gastric inhibitory polypeptide (GIP) responses to equimolar intragastrically administered emulsions of fatty acids (2.62 mmol/7.5 ml/kg) were examined in 18 h fasted obese hyperglycaemic (ob/ob) mice. Propionic acid (C3:0), a saturated short-chain fatty acid, and capric acid (C10:0), a saturated medium chain fatty acid, did not signilicantly stimulate GIP release. However, the saturated long-chain fatty acid stearic acid (C18:0), and especially the unsaturated long-chain fatty acids oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids produced a marked GIP response. The results show that chain length and to a lesser extent the degree of saturation are important determinants of fatty acid-stimulated GIP release. The GIP-release action of long-chain, but not short-chain, fatty acids may be r e l a t e d to differences in their intracellular handling.  相似文献   

14.
Human red cell membrane Ca2+-stimulatable, Mg2+-dependent adenosine triphosphatase (Ca2+-ATPase) activity and its response to thyroid hormone have been studied following exposure of membranes in vitro to specific long-chain fatty acids. Basal enzyme activity (no added thyroid hormone) was significantly decreased by additions of 10(-9)-10(-4) M-stearic (18:0) and oleic (18:1 cis-9) acids. Methyl oleate and elaidic (18:1 trans-9), palmitic (16:0) and lauric (12:0) acids at 10(-6) and 10(-4) M were not inhibitory, nor were arachidonic (20:4) and linolenic (18:3) acids. Myristic acid (14:0) was inhibitory only at 10(-4) M. Thus, chain length of 18 carbon atoms and anionic charge were the principal determinants of inhibitory activity. Introduction of a cis-9 double bond (oleic acid) did not alter the inhibitory activity of the 18-carbon moiety (stearic acid), but the trans-9 elaidic acid did not cause enzyme inhibition. While the predominant effect of fatty acids on erythrocyte Ca2+-ATPase in situ is inhibition of basal activity, elaidic, linoleic (18:2) and palmitoleic (16:1) acids at 10(-6) and 10(-4) M stimulated the enzyme. Methyl elaidate was not stimulatory. These structure-activity relationships differ from those described for fatty acids and purified red cell Ca2+-ATPase reconstituted in liposomes. Thyroid hormone stimulation of Ca2+-ATPase was significantly decreased by stearic and oleic acids (10(-9)-10(-4) M), but also by elaidic, linoleic, palmitoleic and myristic acids. Arachidonic, palmitic and lauric acids were ineffective, as were the methyl esters of oleic and elaidic acids. Thus, inhibition of the iodothyronine effect on Ca2+-ATPase by fatty acids has similar, but not identical, structure-activity relationships to those for basal enzyme activity. To examine mechanisms for these fatty acid effects, we studied the action of oleic and stearic acids on responsiveness of the enzyme to purified calmodulin, the Ca2+-binding activator protein for Ca2+-ATPase. Oleic and stearic acids (10(-9)-10(-4) M) progressively inhibited, but did not abolish, enzyme stimulation by calmodulin (10(-9) M). Double-reciprocal analysis of the effect of oleic acid on calmodulin stimulation indicated noncompetitive inhibition. Addition of calmodulin to membranes in the presence of equimolar oleic acid restored basal enzyme activity. Oleic acid also reduced 125I-calmodulin binding to membranes, but had no effect on the binding of [125I]T4 by ghosts. The mechanism of the decrease by long chain fatty acids of Ca2+-ATPase activity in situ in human red cell ghosts thus is calmodulin-dependent and involves reduction in membrane binding of calmodulin.  相似文献   

15.
During the growth (35 g-340 g), and as compared to results obtained with a lipid-free diet or a diet containing long-chain fatty acids, high levels of Tri C8 : O or Tri C12 : O did not change the quantitative aspects of proteinogenesis and lipogenesis balances. The incorporation of Tri C8 : O into the diet did not change the fatty acid composition of body lipid stores while the incorporation of Tri C12 : O induced a lipogenesis characterized by the disappearance of about 50% of the n-9 and n-7 unsaturated fatty acids, the emergence of an equivalent amount of saturated fatty acids in C12 and C14, and the decrease of hexadecanoic or palmitic acid concentration. Titers of saturated fatty acids with a melting point higher than 40 degrees C increased from 34% to 64%. Results suggested an efficient inhibition of fatty acid biosynthesis de novo by C12 : O, associated with an impossibility for microsomal enzymes to assume the elongation of a sufficient amount of C12 : O to maintain C16 : O concentration and to furnish an important amount of substrate (C18 : O) to delta-9-stearoyl coenzyme A desaturase for oleic acid synthesis. Introducing dodecanoic acid into the diet of growing animals appears to be the most efficient method for increasing the degree of saturation of body lipids without changing the concentrations of long-chain saturated fatty acids.  相似文献   

16.
Enzymatic synthesis of mono-, di-, and triacyglycerols from (poly)unsaturated fatty acids (linoleic, oleic, and conjugated linoleic acids) has been studied as a solvent-free reaction in a packed-bed reactor containing an immobilized lipase from Mucor miehei. The extents of the esterification reactions of interest are primarily determined by the molar ratio of glycerol to fatty acid because the presence of excess glycerol as a immiscible phase is responsible for reducing the activity of the water produced by the esterification reactions. For molar ratios of fatty acid to glycerol of less than 1.5, the percentage of the fatty acid esterified decreases quasi-linearly with an increase in this molar ratio. By appropriate manipulation of the fluid-residence time, one can control the relative proportions of the various acylglycerols in the effluent stream. At the outlet of the reactor, one observes excellent spontaneous separation of the glycerol and acylglycerol/fatty acid phases. At 50 degrees C and a fluid residence time of 1 hour, as much as 90% of the fatty acid can be esterified when the molar ratio of fatty acid to glycerol is 0.33 or less.  相似文献   

17.
The NH2-terminal amino acid of highly purified thyroxine-binding globulin has been identified by dansyl chloride, cyanate and Edman degradation methods. All three gave alanine as the only amino terminal residue. Carbamylation and Edman degradation of the denatured protein yielded 0.86 and 0.98 – 1.05 mole of alanine per mole of protein, respectively. These data further indicate that thyroxine-binding globulin is composed of a single polypeptide chain. Automated Edman degradation gave the partial sequence as: Ala-Ser-Pro-Glu-Gly-Lys-Val-Thr-Ala-Asp-Ser-Ser-Ser-Gln-(Pro)-X-Ala-(Ser)-Leu-Tyr- A computer search revealed no homology of the NH2-terminal segment of thyroxine-binding globulin with human prealbumin. The NH2-terminal portion of prealbumin contains part of the thyroxine binding site.  相似文献   

18.
The binding to resting and activated T lymphocytes of two radiolabelled fatty acids (oleic and arachidonic) was studied in the presence or in the absence of alpha-fetoprotein (AFP) as carrier protein. Fatty acid binding by resting and activated T lymphocytes was determined at 4 degrees C as a function of the concentration of fatty acid and AFP. Under the conditions employed, the following observations were made: (1) in the presence of AFP, fatty acids (oleic and arachidonic acid) are bound to cells by a two-component pathway; one is a saturable process, evidenced when the fatty acid to AFP (FA/AFP) molar ratio was fixed at 1 and the concentration of the fatty acid and the protein varied from 0.1 to 3.2 microM, and the second is a nonsaturable function of FA/AFP molar ratio and was linearly related to the unbound fatty acid concentration in the medium over the entire range studied; (2) in the absence of AFP, the nonsaturable process appears to be the only component of fatty acid binding; 3) at all tested concentrations of free (unbound) fatty acid in the medium, net fatty acid binding by either resting or activated T cells was considerably greater in the presence than in the absence of AFP; (4) in the presence of AFP, fatty acid binding was much higher in activated T cells than in resting T cells, whereas in the absence of AFP, nonsignificant differences were observed between activated and resting T cells; and (5) the time course of fatty acid and AFP binding at 4 degrees C revealed that, at equilibrium, the number of fatty acid molecules bound to the cell was much greater than that of AFP suggesting an accelerated dissociation of the fatty acid upon interaction of the AFP-fatty acid complex with putative cell receptors. It is concluded to the existence of an AFP/AFP-receptor pathway that facilitates the binding of fatty acids to T lymphocytes, particularly upon their blast transformation. This pathway may fulfill the increased requirement for fatty acids characteristic of proliferating cells and may serve to regulate the endocytosis of fatty acids with modulatory effects on lymphocyte function and to protect cells from their cytotoxic potential when internalized in excess.  相似文献   

19.
The primary ligands of human serum albumin (HSA), an abundant plasma protein, are non-esterified fatty acids. In vivo, the majority of fatty acids associated with the protein are unsaturated. We present here the first high-resolution crystal structures of HSA complexed with two important unsaturated fatty acids, the monounsaturated oleic acid (C18:1) and the polyunsaturated arachidonic acid (C20:4). Both compounds are observed to occupy the seven binding sites distributed across the protein that are also bound by medium and long-chain saturated fatty acids. Although C18:1 fatty acid binds each site on HSA in a conformation almost identical with that of the corresponding saturated compound (C18:0), the presence of multiple cis double bonds in C20:4 induces distinct binding configurations at some sites. The observed restriction on binding configurations plausibly accounts for differences in the pattern of binding affinities for the primary sites between polyunsaturated fatty acids and their saturated or monounsaturated counterparts.  相似文献   

20.
The binding constants for interaction of various thryoxine analogues with the thyroxine binding site on human thyroxine-binding globulin have been determined. Equilibrium dialysis, at pH 7.4 and 37 degrees C, was used to measure the competitive effects of different iodothyronine compounds on the binding of 125I-labeled thyroxine to highly purified thyroxine-binding globulin. Relative to L-thyroxine, K = 6 . 10(9) M-1, the association constants of some important analogues were D-thyroxine, 1.04 . 10(9) M-1, 3,5-diiodo-3'-isopropyl-L-thyronine, 4.9 . 10(8) M-1; L-triiodothyronine, 3.3 . 10(8) M-1, 3,3',5'-DL-triiodothyronine (reverse triiodothyronine), 3.1. 10(8) M-1; tetraiodothyropropionic acid, 2.7 . 10(8) M-1; tetraiodothyroacetic acid, 2.6 . 10(8) M-1; 3', 5'- diiodo-DL-thyronine, 8.3 . 10(7) M-1; and 3,5-diiodo-DL-thyronine, 7.1 . 10(7) M-1. Calculation of the deltaG0 values for binding of the analogues indicates that a major contribution to the free energy favoring binding is made by the alanine side chain of thyroxine. A change in configuration of the alpha-amino group from the L to D form causes an unfavorable change of 1 kcal/mol in the free energy of binding. Removal of the alpha-amino group as in tetraiodothyropropionic acid causes an unfavorable change of 1.9 kcal/mol in the free energy of binding. With regard to ring substituents, the results indicate that the two inner 3,5-iodines make about the same contribution to binding as the two outer 3', 5'-iodines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号