首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The review considers the current views of the yeast signaling system that connects mitochondria with the nucleus and is known as retrograde regulation. The adaptive character of this signaling system is emphasized. The system is activated upon damage to mitochondrial functions (e.g., by stress or mutations) and is aimed at adapting the cell to the changed functional state of the organelles. The retrograde signaling system is controlled by positive (Rtg1p, Rtg2p, Rtg3p, and Grr1p) and negative (Mks1p, Lst8p, Bmh1p, and Bmh2p) regulatory factors. The possibility of several retrograde pathways existing in mitochondria is discussed in brief. Data on some functions of retrograde regulation are described.  相似文献   

3.
4.
5.
Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors–Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.  相似文献   

6.
7.
8.
The highly orchestrated progression of the cell cycle depends on the degradation of many regulatory proteins at different cell cycle stages. One of the key cell cycle ubiquitin ligases is the Skp1-cullin-F-box (SCF) complex. Acting in concert with the substrate-binding F-box protein Grr1, SCFGrr1 promotes the degradation of cell cycle regulators as well as various metabolic enzymes. Using a yeast two-hybrid assay with a Grr1 derivative as the bait, we identified She3, which is an adaptor protein in the asymmetric mRNA transport system, as a novel Grr1 substrate. We generated stabilized She3 mutants, which no longer bound to Grr1, and found that the degradation of She3 is not required for regulating asymmetric mRNA transport. However, She3 stabilization leads to slower growth compared to wild-type cells in a co-culture assay, demonstrating that the degradation of She3 by Grr1 is required for optimal cell growth.  相似文献   

9.
10.
11.
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.  相似文献   

12.
13.
14.
15.
16.
We have previously shown that, in human cells, cruciform DNA-binding activity is due to 14-3-3 proteins (Todd, A., Cossons, N., Aitken, A., Price, G. B., and Zannis-Hadjopoulos, M. (1998) Biochemistry 37, 14317-14325). Here, wild-type and single- and double-knockout nuclear extracts from the 14-3-3 Saccharomyces cerevisiae homologues Bmh1p and Bmh2p were analyzed for similar cruciform-binding activities in relation to these proteins. The Bmh1p-Bmh2p heterodimer, present in the wild-type strain, bound efficiently to cruciform-containing DNA in a structure-specific manner because cruciform DNA efficiently competed with the formation of the complex, whereas linear DNA did not. In contrast, the band-shift ability of the Bmh1p-Bmh1p and Bmh2p-Bmh2p homodimers present in the bmh2(-) and bmh1(-) single-knockout cells, respectively, was reduced by approximately 93 and 82%, respectively. The 14-3-3 plant homologue GF14 was also able to bind to cruciform DNA, suggesting that cruciform-binding activity is a common feature of the family of 14-3-3 proteins across species. Bmh1p and Bmh2p were found to associate in vivo with the yeast autonomous replication sequence ARS307, as assayed by formaldehyde cross-linking, followed by immunoprecipitation with anti-Bmh1p/Bmh2p antibody and conventional PCR. In agreement with the finding of an association of Bmh1p and Bmh2p with ARS307, another immunoprecipitation experiment using 2D3, an anti-cruciform DNA monoclonal antibody, revealed the presence of cruciform-containing DNA in ARS307.  相似文献   

17.
18.

Background

Trehalases are highly conserved enzymes catalyzing the hydrolysis of trehalose in a wide range of organisms. The activity of yeast neutral trehalase Nth1 is regulated in a 14-3-3- and a calcium-dependent manner. The Bmh proteins (the yeast 14-3-3 isoforms) recognize phosphorylated Nth1 and enhance its enzymatic activity through an unknown mechanism.

Methods

To investigate the structural basis of interaction between Nth1 and Bmh1, we used hydrogen/deuterium exchange coupled to mass spectrometry, circular dichroism spectroscopy and homology modeling to identify structural changes occurring upon the complex formation.

Results

Our results show that the Bmh1 protein binding affects structural properties of several regions of phosphorylated Nth1: the N-terminal segment containing phosphorylation sites responsible for Nth1 binding to Bmh, the region containing the calcium binding domain, and segments surrounding the active site of the catalytic trehalase domain. The complex formation between Bmh1 and phosphorylated Nth1, however, is not accompanied by the change in the secondary structure composition but rather the change in the tertiary structure.

Conclusions

The 14-3-3 protein-dependent activation of Nth1 is based on the structural change of both the calcium binding domain and the catalytic trehalase domain. These changes likely increase the accessibility of the active site, thus resulting in Nth1 activation.

General significance

The results presented here provide a structural view of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1, which might be relevant to understand the process of Nth1 activity regulation as well as the role of the 14-3-3 proteins in the regulation of other enzymes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号