首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Werner syndrome (WS) is a premature aging disorder that predisposes affected individuals to cancer development. The affected gene, WRN, encodes an RecQ homologue whose precise biological function remains elusive. Altered DNA recombination is a hallmark of WS cells suggesting that WRN plays an important role in these pathways. Here we report a novel physical and functional interaction between WRN and the homologous recombination mediator protein RAD52. Fluorescence resonance energy transfer (FRET) analyses show that WRN and RAD52 form a complex in vivo that co-localizes in foci associated with arrested replication forks. Biochemical studies demonstrate that RAD52 both inhibits and enhances WRN helicase activity in a DNA structure-dependent manner, whereas WRN increases the efficiency of RAD52-mediated strand annealing between non-duplex DNA and homologous sequences contained within a double-stranded plasmid. These results suggest that coordinated WRN and RAD52 activities are involved in replication fork rescue after DNA damage.  相似文献   

2.
Werner syndrome (WS) is a human genetic disorder characterized by extensive clinical features of premature aging. Ataxia-telengiectasia (A-T) is a multisystem human genomic instability syndrome that includes premature aging in some of the patients. WRN and ATM, the proteins defective in WS and A-T, respectively, play significant roles in the maintenance of genomic stability and are involved in several DNA metabolic pathways. A role for WRN in DNA repair has been proposed; however, this study provides evidence that WRN is also involved in ATM pathway activation and in a S-phase checkpoint in cells exposed to DNA interstrand cross-link–induced double-strand breaks. Depletion of WRN in such cells by RNA interference results in an intra-S checkpoint defect, and interferes with activation of ATM as well as downstream phosphorylation of ATM target proteins. Treatment of cells under replication stress with the ATM kinase inhibitor KU 55933 results in a S-phase checkpoint defect similar to that observed in WRN shRNA cells. Moreover, γH2AX levels are higher in WRN shRNA cells than in control cells 6 and 16 h after exposure to psoralen DNA cross-links. These results suggest that WRN and ATM participate in a replication checkpoint response, in which WRN facilitates ATM activation in cells with psoralen DNA cross-link–induced collapsed replication forks.  相似文献   

3.
The human premature aging disorder Werner syndrome (WS) is associated with a large number of symptoms displayed in normal aging. The WRN gene product, a DNA helicase, has been previously shown to unwind short DNA duplexes (相似文献   

4.
Bai Y  Murnane JP 《Human genetics》2003,113(4):337-347
Werner Syndrome (WS) is an autosomal recessive disease characterized by premature aging and chromosome instability. The protein involved in WS, WRN, is a RecQ-type helicase that also has exonuclease activity. WRN has been demonstrated to bind to a variety of other proteins, including RPA, DNA-PKcs, and TRF2, suggesting that WRN is involved in DNA replication, repair, recombination, and telomere maintenance. In culture, WS cells show premature senescence, which can be overcome by transfection with an expression vector containing the gene for the catalytic subunit of telomerase. However, telomerase expression does not eliminate chromosome instability in WS cells, which led to the proposal that telomere loss is not the cause of the high rate of chromosome rearrangements in WS cells. In the present study, we have investigated how a WRN protein containing a dominant-negative mutation (K577M-WRN) influences the stability of telomeres in a human tumor cell line expressing telomerase. The results demonstrate an increased rate of telomere loss and chromosome fusion in cells expressing K577M-WRN. Expression of K577M-WRN results in reduced levels of telomerase activity, however, the absence of detectable changes in average telomere length demonstrates that WRN-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. Thus, telomere loss can contribute to chromosome instability in cells deficient in WRN regardless of the expression of telomerase activity.  相似文献   

5.
贾舒婷  杨世华  罗瑛 《遗传》2009,31(8):785-790
Werner综合征(Werner syndrome, WS)是一种罕见的人类常染色体隐性遗传疾病, 一直以来该病作为研究人类早老综合征的典型病例而受到关注。Werner蛋白(WRN)是Werner综合征中突变的核蛋白, 最近的生化及遗传学研究证明WRN在DNA复制、DNA损伤修复以及端粒的维持方面起着重要的作用。文章综述了Werner综合征的分子遗传学机理及端粒和WRN在Werner综合征发病中的重要作用。通过双敲除Wrn与端粒酶基因建立的小鼠模型忠实地再现了人类Werner综合征, 这种Werner综合征小鼠模型因其同时具有早衰与肿瘤表型而在研究人类肿瘤及衰老的相关性中起到的独特作用。  相似文献   

6.
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.  相似文献   

7.
Werner syndrome is an autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several lines of evidence have suggested that the Werner syndrome protein WRN plays a role in DNA replication and S-phase progression. In order to define the exact role of WRN in genomic replication we examined cell cycle kinetics during normal cell division and after methyl-methane-sulfonate (MMS) DNA damage or hydroxyurea (HU)-mediated replication arrest following acute depletion of WRN from human fibroblasts. Loss of WRN markedly extended the time cells needed to complete the cell cycle after either of these genotoxic treatments. Moreover, replication track analysis of individual, stretched DNA fibers showed that WRN depletion significantly reduced the speed at which replication forks elongated in vivo after MMS or HU treatment. These results establish the importance of WRN during genomic replication and indicate that WRN acts to facilitate fork progression after DNA damage or replication arrest. The data provide a mechanistic basis for a better understanding of WRN-mediated maintenance of genomic stability and for predicting the outcomes of DNA-targeting chemotherapy in several adult cancers that silence WRN expression.  相似文献   

8.
The premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and ATPase-dependent helicase activity on DNA substrates, with particularly high affinity for and activity on replication and recombination structures. After certain DNA-damaging treatments, WRN is recruited to sites of blocked replication and co-localizes with the human single-stranded DNA-binding protein replication protein A (RPA). In this study we examined the physical and functional interaction between WRN and RPA specifically in relation to replication fork blockage. Co-immunoprecipitation experiments demonstrated that damaging treatments that block DNA replication substantially increased association between WRN and RPA in vivo, and a direct interaction between purified WRN and RPA was confirmed. Furthermore, we examined the combined action of RPA (unmodified and hyperphosphorylation mimetic) and WRN on model replication fork and gapped duplex substrates designed to bind RPA. Even with RPA bound stoichiometrically to this gap, WRN efficiently catalyzed regression of the fork substrate. Further analysis showed that RPA could be displaced from both substrates by WRN. RPA displacement by WRN was independent of its ATPase- and helicase-dependent remodeling of the fork. Taken together, our results suggest that, upon replication blockage, WRN and RPA functionally interact and cooperate to help properly resolve replication forks and maintain genome stability.  相似文献   

9.
DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3' → 5' DNA exonuclease activities. Pol δ exonuclease removes 3'-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3'-terminal mismatches to enable primer extension by Pol δ. Consistent with our in vitro observations, we show that WRN contributes to the maintenance of DNA synthesis fidelity in vivo. Cells expressing limiting amounts (~10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.  相似文献   

10.
Werner syndrome (WS) is a human premature aging disorder characterized by chromosomal instability. The cellular defects of WS presumably reflect compromised or aberrant function of a DNA metabolic pathway that under normal circumstances confers stability to the genome. We report a novel interaction of the WRN gene product with the human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in DNA replication, recombination and repair. WS protein (WRN) dramatically stimulates the rate of FEN-1 cleavage of a 5' flap DNA substrate. The WRN-FEN-1 functional interaction is independent of WRN catalytic function and mediated by a 144 amino acid domain of WRN that shares homology with RecQ DNA helicases. A physical interaction between WRN and FEN-1 is demonstrated by their co-immunoprecipitation from HeLa cell lysate and affinity pull-down experiments using a recombinant C-terminal fragment of WRN. The underlying defect of WS is discussed in light of the evidence for the interaction between WRN and FEN-1.  相似文献   

11.
The Werner syndrome (WS) protein (WRN), a DNA helicase/exonuclease, is required for genomic stability and avoidance of cancer. Current evidence suggests that WRN is involved in the resolution of stalled and/or collapsed replication forks. This function is indicated, in part, by replication defects in WS cells and by hypersensitivity to agents causing major structural aberrations in DNA that block replication. We show here that antisense suppression of WRN in two human glioma cell lines reproduces hallmarks of the drug cytotoxicity profile of WS cells, namely, hypersensitivity to 4-nitroquinoline 1-oxide, camptothecin and hydroxyurea. We also show that antisense-treated cells are hypersensitive to methyl-lexitropsin, a site-specific alkylating agent that produces mainly N3-methyladenine, a cytotoxic and replication-blocking lesion. Antisense-treated cells are hypersensitive to O(6)-methylguanine adducts as well, but only when repair by O(6)-methylguanine-DNA methyltransferase is lacking. Our results illustrate the drug sensitivity caused by deficiency of WRN in a uniform genetic background. They extend the WRN DNA damage sensitivity spectrum to methyl base adducts that can result in blocked replication, and suggest that WRN may be required for resumption of processive replication when incomplete repair of DNA damage leaves blocking lesions at forks. The evidence that highly disparate lesions fall within the purview of WRN, and that abrogating DNA repair can reveal dependence on WRN, suggests that WRN may protect the genome from the lethal, mutagenic and carcinogenic effects of widely diverse DNA damage arising from endogenous processes and environmental agents.  相似文献   

12.
Individuals affected by the autosomal recessive disorder Werner’s syndrome (WS) develop many of the symptoms characteristic of premature ageing. Primary fibroblasts cultured from WS patients exhibit karyotypic abnormalities and a reduced replicative life span. The WRN gene encodes a 3′–5′ DNA helicase, and is a member of the RecQ family, which also includes the product of the Bloom’s syndrome gene (BLM). In this work, we show that WRN promotes the ATP-dependent translocation of Holliday junctions, an activity that is also exhibited by BLM. In cells arrested in S-phase with hydroxyurea, WRN localizes to discrete nuclear foci that coincide with those formed by the single-stranded DNA binding protein replication protein A. These results are consistent with a model in which WRN prevents aberrant recombination events at sites of stalled replication forks by dissociating recombination intermediates.  相似文献   

13.
Werner's syndrome (WS) is a rare autosomal recessive disorder characterized by premature aging. The gene responsible for WS encodes a protein homologous to Escherichia coli RecQ. Here we describe a novel Werner helicase interacting protein (WHIP), which interacts with the N-terminal portion of Werner protein (WRN), containing the exonuclease domain. WHIP, which shows homology to replication factor C family proteins, is conserved from E. coli to human. Ectopically expressed WHIP and WRN co-localized in granular structures in the nucleus. The functional relationship between WHIP and WRN was indicated by genetic analysis of yeast cells. Disruptants of the SGS1 gene of Saccharomyces cerevisiae, which is the WRN homologue in yeast, show an accelerated aging phenotype and high sensitivity to methyl methanesulfonate as compared with wild-type cells. Disruption of the yeast WHIP (yWHIP) gene in wild-type cells and sgs1 disruptants resulted in slightly accelerated aging and enhancement of the premature aging phenotype of sgs1 disruptants, respectively. In contrast, disruption of the yWHIP gene partially alleviated the sensitivity to methyl methanesulfonate of sgs1 disruptants.  相似文献   

14.
Werner syndrome (WS) is an inherited disorder characterized by premature aging and genomic instability. The protein encoded by the WS gene, WRN, possesses intrinsic 3' --> 5' DNA helicase and 3' --> 5' DNA exonuclease activities. WRN helicase resolves alternate DNA structures including tetraplex and triplex DNA, and Holliday junctions. Thus, one function of WRN may be to unwind secondary structures that impede cellular DNA transactions. We report here that hairpin and G'2 bimolecular tetraplex structures of the fragile X expanded sequence, d(CGG)(n), effectively impede synthesis by three eukaryotic replicative DNA polymerases (pol): pol alpha, pol delta, and pol epsilon. The constraints imposed on pol delta-catalyzed synthesis are relieved, however, by WRN; WRN facilitates pol delta to traverse these template secondary structures to synthesize full-length DNA products. The alleviatory effect of WRN is limited to pol delta; neither pol alpha nor pol epsilon can traverse template d(CGG)(n) hairpin and tetraplex structures in the presence of WRN. Alleviation of pausing by pol delta is observed with Escherichia coli RecQ but not with UvrD helicase, suggesting a concerted action of RecQ helicases and pol delta. Our findings suggest a possible role of WRN in rescuing pol delta-mediated replication at forks stalled by unusual DNA secondary structures.  相似文献   

15.
Functional role of the Werner syndrome RecQ helicase in human fibroblasts   总被引:3,自引:0,他引:3  
Werner syndrome is an autosomal recessive human genetic instability and cancer predisposition syndrome that also has features of premature aging. We focused on two questions related to Werner syndrome protein (WRN) function in human fibroblasts: Do WRN‐deficient fibroblasts have a consistent cellular phenotype? What role does WRN play in the recovery from replication arrest? We identified consistent cell proliferation and DNA damage sensitivity defects in both primary and SV40‐transformed fibroblasts from different Werner syndrome patients, and showed that these defects could be revealed by acute depletion of WRN protein. Mechanistic analysis of the role of WRN in recovery from replication arrest indicated that WRN acts to repair damage resulting from replication arrest, rather than to prevent the disruption or breakage of stalled replication forks. These results identify readily quantified cell phenotypes that result from WRN loss in human fibroblasts; delineate the impact of cell transformation on the expression of these phenotypes; and define a mechanistic role for WRN in the recovery from replication arrest.  相似文献   

16.
Machwe A  Xiao L  Groden J  Orren DK 《Biochemistry》2006,45(47):13939-13946
The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands. In this study, we demonstrate that both WRN and BLM (but not other selected helicases) can coordinate their unwinding and pairing activities to regress a model replication fork substrate. Notably, fork regression is widely believed to be the initial step in responding to replication blockage. Our findings suggest that WRN and/or BLM might regress replication forks in vivo as part of a genome maintenance pathway, consistent with the phenotypes of WRN- and BLM-deficient cells.  相似文献   

17.
18.
19.
Werner's syndrome (WS) is a rare autosomal recessive disorder that arises as a consequence of mutations in a gene coding for a protein that is a member of RecQ family of DNA helicases, WRN. The cellular function of WRN is still unclear, but on the basis of the cellular phenotypes of WS and of RecQ yeast mutants, its possible role in controlling recombination and/or in maintenance of genomic integrity during S-phase has been envisaged. With the use of two drugs, camptothecin and hydroxyurea, which produce replication-associated DNA damage and/or inhibit replication fork progression, we find that WS cells have a slower rate of repair associated with DNA damage induced in the S-phase and a reduced induction of RAD51 foci. As a consequence, WS cells undergo apoptotic cell death more than normal cells, even if they arrest and resume DNA synthesis at an apparently normal rate. Furthermore, we report that WS cells show a higher background level of DNA strand breaks and an elevated spontaneous induction of RAD51 foci. Our findings support the hypothesis that WRN could be involved in the correct resolution of recombinational intermediates that arise from replication arrest due to either DNA damage or replication fork collapse.  相似文献   

20.
Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stalling and collapse of replication forks that encounter damaged DNA. Using electron microscopy, we visualized the binding of full-length WRN to DNA templates containing replication forks and Holliday junctions, intermediates observed during DNA replication and recombination, respectively. We show that both wild-type WRN and a helicase-defective mutant bind with exceptionally high specificity (>1000-fold) to DNA secondary structures at the replication fork and at Holliday junctions. Little or no binding is observed elsewhere on the DNA molecules. Calculations of the molecular weight of full-length WRN revealed that, in solution, WRN exists predominantly as a dimer. However, WRN bound to DNA is larger; the mass is consistent with that of a tetramer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号