首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three hundred forty five adult arctic foxes (Alopex lagopus) from all counties in Iceland were examined for excess cerumen and ear canker mites (Otodectes cynotis). Only 13 foxes (4%) from a single county in northwestern Iceland were infested, where the prevalence of otodectiasis was 38%. Whether or not this parasite is new to the arctic fox in Iceland is unknown. If it is recently introduced, possible sources of infestation are farmed silver foxes (Vulpes vulpes), domestic dogs, domestic or feral cats, and arctic foxes from Greenland. It appears that the rate of transmission between adult foxes is low; a more common route of transmission is probably from the mother to her offspring or between vixens breeding in the same dens in subsequent years by contamination of the dens. No correlation was found between the prevalence of mites in foxes and Samson character.  相似文献   

2.
Infestation by parasitic Psoroptes mites (Acari: Psoroptidae) is an important cause of economic loss and welfare problems in livestock in many areas of the world. At least five species within this genus have been recognized, based on the host infested, the infestation site and differences in length of the opisthosomal setae of adult male mites. Here the integrity of these species is considered by subjecting populations of mites from a range of host species and geographical locations to simultaneous morphological and molecular genetic analyses. Morphological analysis showed that there were significant differences in shape and size between mite populations from different hosts, and that length of the outer opisthosomal setae in males and the homologous seta in females were the most important distinguishing character in adults. However, considerable variation in outer opisthosomal seta length was evident within and between populations of mites, and differences were not clearly related to host-species or geographical origin and did not support the accepted species differences. Molecular characterization using sequence data from the mitochondrial second internal transcribed spacer (ITS-2) region and microsatellite markers found little or no consistent host-related variation between the mite population samples. The results suggest that there is no case for considering the Psoroptes mites from the different hosts examined as separate species and that the morphological variation observed therefore may represent phenotypic adaptation to the local microenvironment on particular species of host.  相似文献   

3.
For pathogens that infect multiple species, the distinction between reservoir hosts and spillover hosts is often difficult. In Alaska, three variants of the arctic rabies virus exist with distinct spatial distributions. We tested the hypothesis that rabies virus variant distribution corresponds to the population structure of the primary rabies hosts in Alaska, arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) to possibly distinguish reservoir and spillover hosts. We used mitochondrial DNA (mtDNA) sequence and nine microsatellites to assess population structure in those two species. mtDNA structure did not correspond to rabies virus variant structure in either species. Microsatellite analyses gave varying results. Bayesian clustering found two groups of arctic foxes in the coastal tundra region, but for red foxes it identified tundra and boreal types. Spatial Bayesian clustering and spatial principal components analysis identified 3 and 4 groups of arctic foxes, respectively, closely matching the distribution of rabies virus variants in the state. Red foxes, conversely, showed eight clusters comprising two regions (boreal and tundra) with much admixture. These results run contrary to previous beliefs that arctic fox show no fine‐scale spatial population structure. While we cannot rule out that the red fox is part of the maintenance host community for rabies in Alaska, the distribution of virus variants appears to be driven primarily by the arctic fox. Therefore, we show that host population genetics can be utilized to distinguish between maintenance and spillover hosts when used in conjunction with other approaches.  相似文献   

4.
The fox-like canids include taxa from the genera Alopex, Otocyon, Fennecus, Urocyon and Vulpes . Previous morphological analysis indicated that species from the latter three genera are very similar and should be included in the same genus whereas Alopex and Otocyon are sufficiently different to be included in separate genera. Using phylogenetic methods, we analyse mitochondrial DNA (mtDNA) restriction fragment and restriction site data, and 402 bp of cytochrome b sequence variation in fox-like canids. Our results suggest that Alopex lagopus , the arctic fox, is actually a very close relative of the swift fox, a species in the genus Vulpes . Similarly, the fennec, Fennecus zerda is related to the co-existing desert species, the Blanford's fox, Vulpes cana . The grey fox, Urocyon cinereoargenteus , and the bat-eared fox, Otocyon megalotis , are not closely related to each other or to any of the sampled fox taxa. Our results indicate that desert adaptations have evolved independently at least twice in the Canidae, and that Pleistocene glaciations and character divergence may be important causes of morphological change in canids.  相似文献   

5.
The distribution of many predators may be limited by interactions with larger predator species. The arctic fox in mainland Europe is endangered, while the red fox is increasing its range in the north. It has been suggested that the southern distribution limit of the arctic fox is determined by interspecific competition with the red fox. This has been criticised, on the basis that the species co-exist on a regional scale. However, if the larger red fox is superior and interspecific competition important, the arctic fox should avoid close contact, especially during the breeding season. Consequently, the distribution of breeding dens for the two species would be segregated on a much smaller spatial and temporal scale, in areas where they are sympatric. We tested this hypothesis by analysing den use of reproducing arctic and red foxes over 9 years in Sweden. High quality dens were inhabited by reproducing arctic foxes more often when no red foxes bred in the vicinity. Furthermore, in two out of three cases when arctic foxes did reproduce near red foxes, juveniles were killed by red foxes. We also found that breeding arctic foxes occupied dens at higher altitudes than red foxes did. In a large-scale field experiment, red foxes were removed, but the results were not conclusive. However, we conclude that on the scale of individual territories, arctic foxes avoid areas with red foxes. Through interspecific interference competition, the red fox might thus be excluding the arctic fox from breeding in low altitude habitat, which is most important in years when food abundance is limited and competition is most fierce. With high altitude refuges being less suitable, even small-scale behavioural effects could scale up to significant effects at the population level.  相似文献   

6.
The term synhospitality means the association of two or more closely related parasite species with one host species (Eichler, 1966). The cases of two or three synhospitalic species are known from the same host species, and especially ones where parasites were recorded from different parts of the host range, are quite common. The most ordinary reason causing synhospitality in permanent parasites is the host switching. Nevertheless, there are a number of synhospitality cases, where the parasite complex is monophyletic because evolved on a single host species. The special term--"phylogenetic synhospitality" (FS) is proposed for these cases of synhospitality. Most known cases of FS in acariform mites, permanent parasites of vertebrates, are analysed. It is found out that both astigmatan and prostigmatan parasite mites demonstrate a numbers of FS. The majority of these examples represent parasitism of two or three synhospitalic parasite species. Impressive examples of FS involving a number of synhospitalic species is shown by only astigmatan mites inhabiting the fur of mammals or plumage of birds. Most known examples involving four or more mite species are discussed: 51 mite species of the genus Schizocarpus (Chirodiscidae) parasitizing Castor fiber and C. canadensis (Castoridae); 6 species of Listrophorus spp. (Listrophoridae) from Ondatra zibethicus (Cricetidae); 23 species of Listrophoroides s. 1. (Atopomelidae) from Maxomys surifer (Muridae); 21 species of Cytostethum (Atomelidae) from Potorous tridactylus (Potoridae); 4 species of Listrophoroides (Afrolistrophoroides) from Malacomys longipes (Muridae); 7 species of Fainalges (Xolalgidae) from Aratinga holochlora (Psittacidae); 4 species of Zygepigynia (Pteronyssidae) from Chrysocolaptes lucidus (Picidae). The main reason of FS is that, in spite of the Fahrenholz's rule, the speciation of many parasites proceeds much more intensively than in their hosts because of the more rapid replacement of the parasitic generations. The first factor causing FS is the mite speciation it temporary segregated populations of the host (allopatric speciation). In this case, the "multispecies complexes" appeared after the subsequent reintegration of the host populations formerly isolated. The second factor is the speciation due to the specialization of mites to local microhabitats in the fur or plumage of host (sympatric or synxenic speciation). The second way of speciation is most characteristic for mites with highly specialized attaching structures. The phenomenon of FS more resides in ectoparasites of mammals rather than in feather mites in spite of much more structural complicacy of plumage rather than the fur. The high mobility of birds and wide dispersion of their new generations probably embarrass the process of sympatric speciation in their parasites. As a rule, only really significant geographical barriers play role for population isolation in birds. Thus, it could be concluded that two independent factors or their combination lead to FS. (i) The complex and/or disjunctive host range giving a possibility for allopatric speciation in parasites. (ii) The deep mite specialization to local microhabitats on the host body causing sympatric (synxenic) speciation. Fur of mammals and plumage of birds are very complicated in structure and microconditions and provide a considerable number of different microhabitats for mites inhabiting them. The prevalence of one of these two factors depends on the biological peculiarities of both parasites and their hosts. In mites with lesser specialized attaching organs, for example in atopomelids, allopatric speciation dominates. In mites with strongly specialized attaching organs, for example in listrophorids or chirodiscids, both pathways of speciation may take place. In feather mites, sympatric speciation should be more probable due to quite complicate and various structure of feathers in avian hosts. In fur mites, sympatric speciation is more likely in mites parasitizing hosts with peculiar ecology, for example in semiaquatic rodents possessing quite different fur structure in different parts of the body.  相似文献   

7.
Host specificity in parasites can be explained by spatial isolation from other potential hosts or by specialization and speciation of specific parasite species. The first assertion is based on allopatric speciation, the latter on differential lifetime reproductive success on different available hosts. We investigated the host specificity and cophylogenetic histories of four sympatric European bat species of the genus Myotis and their ectoparasitic wing mites of the genus Spinturnix. We sampled >40 parasite specimens from each bat species and reconstructed their phylogenetic COI trees to assess host specificity. To test for cospeciation, we compared host and parasite trees for congruencies in tree topologies. Corresponding divergence events in host and parasite trees were dated using the molecular clock approach. We found two species of wing mites to be host specific and one species to occur on two unrelated hosts. Host specificity cannot be explained by isolation of host species, because we found individual parasites on other species than their native hosts. Furthermore, we found no evidence for cospeciation, but for one host switch and one sorting event. Host‐specific wing mites were several million years younger than their hosts. Speciation of hosts did not cause speciation in their respective parasites, but we found that diversification of recent host lineages coincided with a lineage split in some parasites.  相似文献   

8.
To clarify the taxonomic status of mites of the genus Sarcoptes, the second internal transcribed spacer (ITS-2) of the rRNA gene, as well as phenotypic characters, were investigated in 23 isolates from nine host species in four continents. Phenotypic differences among isolates were observed, but the range of variation within each isolate precluded the differentiation of individual mites. Genotypically, there was no delimitation between distinct genotypic groups and no correlation with host species or geographic origin was evident. These results support the conspecificity of the mites investigated and confirm the view that the genus Sarcoptes consists of a single, heterogenous species.  相似文献   

9.
Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.  相似文献   

10.
The Giemsa-banding patterns of chromosomes from the arctic fox (Alopex lagopus), the red fox (Vulpes vulpes), the kit fox (Vulpes macrotis), and the raccoon dog (Nyctereutes procyonoides) are compared. Despite their traditional placement in different genera, the arctic fox and the kit fox have an identical chromosome morphology and G-banding pattern. The red fox has extensive chromosome arm homoeology with these two species, but has only two entire chromosomes in common. All three species share some chromosomes with the raccoon dog, as does the high diploid-numbered grey wolf (Canis lupus, 2n = 78). Moreover, some chromosomes of the raccoon dog show partial or complete homoeology with metacentric feline chromosomes which suggests that these are primitive canid chromosomes. We present the history of chromosomal rearrangements within the Canidae family based on the assumption that a metacentric-dominated karyotype is primitive for the group.  相似文献   

11.
Here, we report from the first direct observation of a red fox (Vulpes vulpes) intrusion on an arctic fox (Vulpes lagopus) breeding den from the southern Arctic tundra of Yamal Peninsula, Russia in 2007. At the same time, as a current range retraction of the original inhabitant of the circumpolar tundra zone the arctic fox is going on, the red fox is expanding their range from the south into arctic habitats. Thus, within large parts of the northern tundra areas the two species are sympatric which gives opportunities for direct interactions including interference competition. However, direct first-hand observations of such interactions are rare, especially in the Russian Arctic. In the present study, we observed one red fox taking over an arctic fox breeding den which resulted in den abandonment by the arctic fox. On July 19, eight arctic fox pups were observed on the den before the red fox was observed on the same den July 22. The pups were never seen at the den or elsewhere after the red fox was observed on the den for as long as we stayed in the area (until August 10). Our observation supports the view that direct interference with red fox on breeding dens may contribute to the range retraction of arctic foxes from the southern limits of the Arctic tundra in Russia.  相似文献   

12.
The genus Langeronia parasitizing the intestine of several species of anurans is distributed from North to Central America. We identified Langeronia macrocirra and Langeronia cf. parva from the same host and localities, and present here new data not applicable about their tegumental surface by scanning electron microscopy. We compared sequences of the rDNA ITS2 region and mtDNA cox1 gene for the two morphotypes. ITS2 exhibited a high degree of conservation. Phylogenetic reconstruction using cox1 revealed three clades (I, II, and III), which did not correspond to a previous identification or host. Little divergence was found within clades: sequences were identical in clade I, whereas clade II had 0.27% and clade III had 1.08%. Inter-clade divergence reached 8.69% (I vs. III). This pattern of genetic divergence indicated that both taxa probably belong to the same species, so we posit that the morphological changes could be correlated with development. Increasing sample size and geographical coverage will contribute to the taxonomy of the genus based on morphological and molecular evidence, and will open tracks toward the use of DNA barcodes to the genus in Mexico.  相似文献   

13.
The ‘third pole’ of the world is a fitting metaphor for the Himalayan–Tibetan Plateau, in allusion to its vast frozen terrain, rivalling the Arctic and Antarctic, at high altitude but low latitude. Living Tibetan and arctic mammals share adaptations to freezing temperatures such as long and thick winter fur in arctic muskox and Tibetan yak, and for carnivorans, a more predatory niche. Here, we report, to our knowledge, the first evolutionary link between an Early Pliocene (3.60–5.08 Myr ago) fox, Vulpes qiuzhudingi new species, from the Himalaya (Zanda Basin) and Kunlun Mountain (Kunlun Pass Basin) and the modern arctic fox Vulpes lagopus in the polar region. A highly hypercarnivorous dentition of the new fox bears a striking resemblance to that of V. lagopus and substantially predates the previous oldest records of the arctic fox by 3–4 Myr. The low latitude, high-altitude Tibetan Plateau is separated from the nearest modern arctic fox geographical range by at least 2000 km. The apparent connection between an ancestral high-elevation species and its modern polar descendant is consistent with our ‘Out-of-Tibet’ hypothesis postulating that high-altitude Tibet was a training ground for cold-environment adaptations well before the start of the Ice Age.  相似文献   

14.
Plasma samples of 235 foxes from 38 complete families (14 of arctic foxes, 21 of silver foxes and 3 with arctic x silver fox hybrid offspring) were analysed by one-dimensional horizontal polyacrylamide gel electrophoresis (PAGE) pH 9.0 followed by general-protein staining of gels. A major postalbumin of fox plasma was identified as alpha 1B-glycoprotein (alpha 1B) by using immunoblotting with antiser m specific to human or pig plasma alpha 1B. Four codominant, autosomal alleles of alpha 1B were found in arctic foxes. Two transferrin (TF) alleles (TfF, TfS) were observed in arctic foxes and two (TfD, Tff) in silver foxes; the TF F type of both of the fox species showed identical electrophoretic mobilities. The arctic foxes showed a high degree of polymorphism for both TF and alpha 1B. The silver foxes showed a scarce polymorphism of TF and were monomorphic for alpha 1B. The arctic fox, silver fox and their hybrids could be clearly differentiated from one another by their plasma protein patterns obtained by the PAGE method.  相似文献   

15.
In the present report we show the chromosomal localization of two BAC clones, carrying the leptin (LEP) and insuline-like growth factor 1 (IGF1) genes, respectively, in four species belonging to the family Canidae: the dog, red fox, arctic fox and the Chinese raccoon dog. The assignments are in agreement with earlier data obtained from comparative chromosome painting for the dog, red fox and arctic fox.  相似文献   

16.
We have determined the sequences of 5S rRNA and spliced leader (SL) RNA genes, and adjacent intergenic regions for representatives of all known trypanosomatid genera parasitizing insects. The genetic loci have been analyzed separately as well as by a combined approach. Several isolates, assigned by morphology to different genera (Leptomonas spp., Blastocrithidia spp.), seem to belong to a single species with an unexpectedly wide host and geographical range. An unnamed trypanosomatid isolated from rats in Egypt was found to belong to the genus Herpetomonas, so far associated with insect hosts only. It is closely related to Herpetomonas ztiplika, a parasite of a blood-sucking biting midge. Apparently several different trypanosomatid species can infect one insect species, as exemplified by Leptomonas sp. PL and Wallaceina sp. Wsd, which were isolated from different specimens of Salda littoralis on the same locality and day. However, since the same species of Leptomonas was obtained from insect hosts belonging to different genera, some insect trypanosomatids may have low host specificity. Our data revealed additional discrepancies between molecular phylogenetic data and cell morphology, rendering current trypanosomatid taxonomy unreliable.  相似文献   

17.
测定了赤狐的线粒体基因组全序列,总长度为16 723 bp,碱基组成为:31.3% A、26.1% C、14.8% G、27.8% T。和大多数哺乳动物一样,赤狐的线粒体全基因组包含13个蛋白质编码基因、2个核糖体RNA基因、22个转运RNA基因和1个控制区。除ND3基因起始密码子为不常见的ATT外,赤狐与北极狐、狼、家犬、郊狼的线粒体蛋白质编码遵循相同模式。在控制区的保守序列区段1和2之间发现一段较长的富含AC的随机重复序列。为了验证赤狐与其他犬科动物的系统发育关系,利用12个重链蛋白质编码基因,分别通过邻接法和最大简约法构建了系统发育树。结果表明:赤狐与北极狐是姐妹群,它们在犬科中都属于赤狐型分支,而灰狼、家犬和郊狼则属于狼型分支,与现有的系统进化研究结果一致。  相似文献   

18.
The RAPD-PCR technique was applied to identify genetic markers able to distinguish between four canid species: the arctic fox (Alopex lagopus), red fox (Vulpes vulpes), Chinese raccoon dog (Nyctereutes procyonoides procyonoides) and six breeds of the domestic dog (Canis familiaris). A total of 29 ten-nucleotide arbitrary primers were screened for their potential use in the differentiation of these species. Ten primers amplified RAPD profiles that made it possible to distinguish between the investigated taxa. A number of species-specific bands was scored within RAPD profiles produced by these primers: 35.6% of all the polymorphic bands were unique to the Chinese raccoon dog, 29.6% were unique to the domestic dog, 21.2% were diagnostic for the red fox and 13.6% for the arctic fox. No breed-specific fragments were amplified from canine DNA; however, three primers produced bands characteristic for the dog, but not present in all of the investigated breeds. A Neighbor-Joining tree constructed on the basis of the analysis of RAPD profiles amplified by six primers revealed that the phylogenetic distance between the dog and the arctic fox is larger than the distance between the dog and the red fox. The phylogenetic branch of the Chinese raccoon dog was the most distinct on the dendrogram, suggesting that this species belongs to a different phylogenetic lineage. Obtained results make it possible to conclude that RAPD analysis can be a powerful tool for developing molecular markers useful in distinguishing between species of the family Canidae and for studying their phylogenetic relations.  相似文献   

19.
Numerous mutations of the human melanocortin receptor type 4 (MC4R) gene are responsible for monogenic obesity, and some of them appear to be associated with predisposition or resistance to polygenic obesity. Thus, this gene is considered a functional candidate for fat tissue accumulation and body weight in domestic mammals. The aim of the study was comparative analysis of chromosome localization, nucleotide sequence, and polymorphism of the MC4R gene in two farmed species of the Canidae family, namely the Chinese raccoon dog (Nycterutes procyonoides procyonoides) and the arctic fox (Alopex lagopus). The whole coding sequence, including fragments of 3'UTR and 5'UTR, shows 89% similarity between the arctic fox (1276 bp) and Chinese raccoon dog (1213 bp). Altogether, 30 farmed Chinese raccoon dogs and 30 farmed arctic foxes were searched for polymorphisms. In the Chinese raccoon dog, only one silent substitution in the coding sequence was identified; whereas in the arctic fox, four InDels and two single-nucleotide polymorphisms (SNPs) in the 5'UTR and six silent SNPs in the exon were found. The studied gene was mapped by FISH to the Chinese raccoon dog chromosome 9 (NPP9q1.2) and arctic fox chromosome 24 (ALA24q1.2-1.3). The obtained results are discussed in terms of genome evolution of species belonging to the family Canidae and their potential use in animal breeding.  相似文献   

20.
The aim of this study was to compare Toxoplasma gondii infection in three canid species: red fox Vulpes vulpes, arctic fox Vulpes lagopus and raccoon dog Nyctereutesprocyonoides kept at the same farm. Anal swabs were taken from 24 adult and 10 juvenile red foxes, 12 adult arctic foxes, three adult and seven juvenile raccoon dogs. Additionally, muscle samples were taken from 10 juvenile red foxes. PCR was used to detect T. gondii DNA. T. gondii infection was not detected in any of the arctic foxes; 60% ofraccoon dogs were infected; the prevalence of the parasite in material from red fox swabs was intermediate between the prevalence observed in arctic foxes and raccoon dogs. It is possible that susceptibility and immune response to the parasite differ between the three investigated canid species. T. gondii DNA was detected in muscle tissue of five young foxes. The results of this study suggest that T. gondii infection is not rare in farmed canids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号