首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present work was to further elucidate the role of thyroid hormones in the control of body temperature and metabolism during physical exercise. Changes in rectal temperature (Tre), some parameters of exercise-metabolism and in the plasma noradrenaline (NA) levels were examined in eight dogs performing submaximal treadmill exercise to exhaustion before and after thyroidectomy (THY). The metabolic 'responses to adrenaline (A) infusion were also compared in intact and THY dogs. During the exercise performed by THY dogs Tre increases were markedly attenuated, plasma FFA level increases were reduced and the pattern of plasma NA changes was modified in comparison with control runs. The reduced exercise-induced FFA mobilization in THY dogs might be attributed to a lower activation of the adrenergic system in the later stage of exercise and to the weaker lipolytic action of catecholamines. The attenuated Tre increases during exercise performed by THY dogs and the exercise-hyperthermia described previously in dogs treated with thyroid ormones suggest that an optimum level of thyroid hormones is necessary to induce typical changes in body temperature during physical exercise.  相似文献   

2.
Progressive enhancement of body temperature responses to consecutive exercise-bouts of the same intensity in dogs. Acta physiol. pol., 1985, 36 (3): 165-174. Changes in rectal (Tre), muscle (Tm), and hypothalamic (Thy) temperatures, plasma osmolality, and some intermediary metabolic variables were examined in dogs performing four successive exercise-bouts of the same intensity. During the rest-intervals separating the exercise-bouts body temperatures returned to initial levels and water losses were replaced. Tm and Tre responses to consecutive exercise-bouts were progressively increasing. Similar tendency was found in Thy changes. Cardiac and respiratory frequencies attained the same levels in all four exercise-bouts, while blood lactate and FFA concentrations were increasing and blood glucose level was decreasing progressively. No changes in plasma osmolality was noted. Exercise-induced increases in Tm correlated positively with plasma FFA concentration (r = 0.68). Body temperature responses to exercise were reduced by beta-adrenergic blockade. It is concluded that the enhancement of the thermal responses to consecutive exercise-bouts can be related to the metabolic action of catecholamines.  相似文献   

3.
2-months restriction of physical activity of dogs markedly reduced their capacity for prolonged running. The rate of exercise-induced Tre increases was significantly higher in the cage-confined dogs in comparison with controls. At the point of exhaustion blood glucose concentration and muscle glycogen content were similar in the control and cage-confined animals, in spite of the much shorter time of exercise until exhaustion in the latter. The exercise-induced increases in plasma FFA concentration were considerably lower in dogs after prolonged inactivity period in spite of the greater activation of the adrenergic system. It is concluded, that there are several factors which may contribute to the reduction of the ability of cage-confined dogs to perform prolonged physical exercise. The most important seems to be the diminished muscle glycogen content, modifications in exercise metabolism and exercise-induced hyperthermia.  相似文献   

4.
The aim of this study was to provide information concerning the mechanism of exercise-induced stimulation of growth hormone (GH) release in human subjects. For this reason serum GH as well as some hemodynamic variables and blood concentrations of noradrenaline (NA), insulin (IRI), lactate (LA), glucose (BG), and free fatty acids (FFA) were determined in seven healthy male subjects exercising on a bicycle ergometer with arms or legs and running on a treadmill at equivalent oxygen consumption levels. Significantly greater increases in serum GH concentration accompanied arm exercises than those observed during the leg exercises. This was accompanied by greater increases in heart rate, blood pressure, and plasma NA and blood lactate concentrations. Serum IRI decreased during both leg exercises and did not change during the arm exercise. There were no differences in BG and plasma FFA concentrations between the three types of exercise. The role of humoral and neural signals responsible for the greater GH response to arm exercise is discussed. The findings are consistent with the hypothesis that neural afferent signals sent by muscle "metabolic receptors" participate in the activation of GH release during physical exercise. It seems likely that the stimulation of these chemoreceptors is more pronounced when smaller muscle groups are engaged at a given work load. However, a contribution of efferent impulses derived from the brain motor centres to the control system of GH secretion during exercise is also possible.  相似文献   

5.
Metabolic responses to a single i.v. injection of cristalline insulin (0.2 i.u./kg b.w.) were compared in control and T4-treated dogs both at rest and after prolonged physical exercise. The post-insulin decrease in blood glucose was significantly correlated with the pre-insulin BG concentration. Thus, the insulin-induced fall of BG was greatest in T4-treated dogs at rest, in which significantly higher BG levels were found in comparison with controls, and smallest in the same dogs after exercise, i.e. at the lowest initial BG concentrations. The post-insulin hypoglycaemia caused marked increases in the plasma FFA level in control dogs, both at rest and after physical effort, and in T4-treated dogs at rest. They were accompanied by elevations in the plasma adrenaline levels. In T4-treated dogs given insulin after exercise decreases both in the plasma FFA and A concentrations were found. In the majority of the control and T4-treated dogs insulin injected at rest caused an increase in blood LA levels, being more pronounced in the latter. Insulin injected after physical exercise did not change blood LA level in T4 treated dogs, and it caused its decrease in the control animals. The results of these investigations show that both T4-treatment and physical exercise, performed prior to insulin injection, modify the metabolic response to insulin and post-insulin hypoglycaemia.  相似文献   

6.
Exercise-induced hyperketonemia was investigated using streptozotocin (STZ)-diabetic rats subjected to running exercise on a treadmill. The degrees of hyperketonemia after 50, 55 and 60% VO2max of exercises were similar in mild diabetic rats (fasting plasma glucose; FPG less than 11 mM). The degree of hyperketonemia (especially an increase in acetoacetate; AcAc) after 60% VO2max of exercise was correlated with FPG (P less than 0.01) and basal plasma ketone bodies (P less than 0.01). Prolonged training with 60% VO2max of exercise for 30 min 3 times per week for 6 wks reduced the increase in plasma ketone bodies induced by the exercise in both mild (FPG less than 11 mM) and severe (FPG greater than 22 mM) diabetic rats. The exercise-induced increase in plasma glucagon in mild diabetic rats and free fatty acids (FFA) in severe diabetic rats are also reduced by the training. These results demonstrate that exercise-induced hyper-AcAc-emia correlated with the FPG level is reduced by prolonged training in diabetic rats, and might suggest that exercise-induced hyperketonemia is reduced by long-term exercise training also in diabetic patients.  相似文献   

7.
Metabolic and hormonal responses to prolonged treadmill exercise in dogs fed a fat-enriched meal 4 h prior to the exercise were compared to those measured 4 h after a mixed meal or in the postabsorptive state. Ingestion of the fat-enriched meal caused significant elevations in the resting values of plasma triglyceride (TG), free fatty acid (FFA), and glycerol concentrations. A reduction of the plasma TG concentration (from 1.6 +/- 0.2 to 1.1 +/- 0.10 mmol X l-1, P less than 0.005) occurred only in dogs exercising after the fat-enriched meal. No significant changes in this variable were noted in dogs fed a mixed meal, whilst in the postabsorptive state exercise caused an increase in the plasma TG level (from 0.42 +/- 0.03 to 0.99 +/- 0.11 mmol X l-1, P less than 0.01). The exercise-induced elevations in plasma FFA and glycerol concentrations were the highest in the dogs given the fat-enriched meal. Plasma glycerol during exercise correlated with the initial values of circulating TG (r = 0.73). The plasma FFA-glycerol ratio, at the end of exercise was lowest in the dogs taking the fat-enriched meal (1.39 +/- 0.19), suggesting an increased utilization of FFA in comparison with that in the postabsorptive state (3.27 +/- 0.37) or after a mixed meal (2.88 +/- 0.55). Basal serum insulin (IRI) concentrations were similarly enhanced in dogs fed fat-enriched and mixed meals, and they were reduced to control values within 60 min of exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Effects of thyroxine on temperature and metabolism during exercise were studied in dogs after beta-adrenergic blockade. Dogs performed 60 min treadmill exercise of moderate intensity 5 and 72 h following thyroxine injected s.c. in a single dose of 0.1 mg/kg b.w. Thyroxine increased significantly the lipolytic response to exercise as well as blood lactate (LA) concentrations and rectal temperature (Tre) during exercise as early as 5h following the hormone administration. The changes became more pronounced 72 h after the injection. At rest Tre, blood FFA and LA levels in the thyroxine-treated dogs did not differ from the control values, and blood glucose was slightly, but significantly higher. Propranolol given intravenously in a dose of 0.25 mg/kg at 30 min of the exercise performed 72 h following thyroxine injection abolished the plasma FFA rise, and inhibited to a certain extent increases in Tre and blood LA concentrations during the next 30 min of exercise.  相似文献   

9.
Our group (Magkos F, Wright DC, Patterson BW, Mohammed BS, Mittendorfer B, Am J Physiol Endocrinol Metab 290: E355-E362, 2006) has recently demonstrated that a single, prolonged bout of moderate-intensity cycling (2 h at 60% of peak oxygen consumption) in the evening increases basal whole-body free fatty acid (FFA) flux and fat oxidation, decreases hepatic VLDL-apolipoprotein B-100 (apoB-100) secretion, and enhances removal efficiency of VLDL-triglyceride (TG) from the circulation the following day in untrained, healthy, lean men. In the present study, we investigated the effect of a single, shorter-duration bout of the same exercise (1 h cycling at 60% of peak oxygen consumption) on basal FFA, VLDL-TG, and VLDL-apoB-100 kinetics in seven untrained, healthy, lean men by using stable isotope-labeled tracer techniques. Basal FFA rate of appearance in plasma and plasma FFA concentration were approximately 55% greater (P < 0.05) the morning after exercise than rest, whereas resting metabolic rate and whole-body substrate oxidation rates were not different after rest and exercise. Exercise had no effect on plasma VLDL-TG and VLDL-apoB-100 concentrations, hepatic VLDL-TG and VLDL-apoB-100 secretion rates, and VLDL-TG and VLDL-apoB-100 plasma clearance rates (all P > 0.05). We conclude that in untrained, healthy, lean men 1) the exercise-induced changes in basal whole-body fat oxidation, VLDL-TG, and VLDL-apoB-100 metabolism during the late phase of recovery from exercise are related to the duration of the exercise bout; 2) single sessions of typical recreational activities appear to have little effect on basal, fasting plasma TG homeostasis; and 3) there is a dissociation between systemic FFA availability and VLDL-TG and VLDL-apoB-100 secretion by the liver.  相似文献   

10.
The effects of euhydration (Eh) and light (Dh1) and moderate (Dh2) dehydrations on plasma prolactin (PRL) levels were studied in 5 young male volunteers at rest and during exercise to exhaustion (50% of VO2max) in a warm environment (Tdb = 35 degrees C, rh = 20-30%). Light and moderate dehydrations (loss of 1.1 and 1.8% body respectively) were obtained before exercise by controlled hyperthermia. Compared to Eh, time for exhaustion was reduced in Dh1 and Dh2 (p less than 0.01) and rectal temperature (Tre) rose faster in Dh2 (p less than 0.05). Both venous plasma PRL and norepinephrine (NE) increased during exercise at any hydration level (p less than 0.05). Plasma PRL reached higher values after 40 and 60 min in Dh2 and Dh1 (p less than 0.05). Plasma NE values were higher in Dh2 at rest and at the 40th min during exercise (p less than 0.05). Plasma PRL was linearly correlated to Tre and plasma NE (p less than 0.001) but unrelated to plasma volume variation and osmolality. Our results provide further evidence for the major effect of body temperature in exercise-induced PRL changes. Moreover, the plasma PRL-NE relationship suggests that these changes may result from central noradrenergic activation.  相似文献   

11.
Eight-week restriction of physical activity markedly reduced the capacity for prolonged running. The rate of exercise-induced Tre increases was also significantly higher in comparison with control experiments. At the point of exhaustion blood glucose concentration and muscle glycogen content were similar in the control and cage-confined animals, however the rate of decrease in blood glucose level and muscle glycogen depletion during exercise were higher in the cage-confined dogs than in the controls.  相似文献   

12.
Lipolytic and glycogenolytic responses to catecholamine infusions were studied in resting dogs before and 20 h following administration of a single dose (0.1 mg/kg) of triiodothyronine (T3). In the dogs pretreated with T3 much higher increases in the plasma FFA concentration were found both during noradrenaline and adrenaline infusions in comparison with control experiments. Adrenaline-induced increases in blood LA and glucose levels were also significantly higher in T3-pretreated dogs than in controls. The blockade of beta-adrenergic receptors with propranolol prevented the increases in blood FFA and LA concentrations during subsequent adrenaline infusion. Phentolamine -- the alpha-adrenergic blocking agent -- infused to the T3-pretreated dog inhibited the adrenaline-induced rise in blood glucose level. The observed changes in the metabolic responses to catecholamines induced by triiodothyronine pretreatment indicate that at least in the dog this hormone potentiates both the lipolytic and glycogenolytic effects of catecholamines acting on appropriate adrenergic receptors.  相似文献   

13.
The turnover of plasma free fatty acid (FFA) was studied during the recovery from exercise with the aid of a continuous infusion of 14C-labeled oleic acid. Arterial FFA reached a maximum of twice the exercise value after 6 min of recovery and was still 75% above the basal level after 20 min. Within 2 min after exercise, plasma radioactivity had increased and the specific activity of plasma oleic acid had fallen. The rate of uptake of FFA from the plasma pool rsoe by 40% during the first minutes after exercise. The rate of release of FFA to the plasma pool showed a peak 2 min after exercise and was thereafter about 40 mumol/min lower than the rate of uptake. The fractional turnover of FFA decreased to resting levels within 5-10 min after exercise. It is concluded that the postexercise peak in arterial FFA is a consequence of augmented release of FFA into the plasma pool above the level during exercise, possibly related to the release of sympathetic vasoconstrictor tone. As a consequence, the rate of removal of FFA rises at the end of exercise and remains augmented above the basal level for as long as the arterial concentration is increased.  相似文献   

14.
The proinflammatory cytokine interleukin-6 (IL-6) may modulate the onset and progression of complications of diabetes. As this cytokine increases after exercise, and many other exercise responses are altered by prior glycemic fluctuations, we hypothesized that prior hyperglycemia might exacerbate the IL-6 response to exercise. Twenty children with type 1 diabetes (12 boys/8 girls, age 12-15 yr) performed 29 exercise studies (30-min intermittent cycling at approximately 80% peak O2 uptake). Children were divided into four groups based on highest morning glycemic reading [blood glucose (BG) < 150, BG 151-200, BG 201-300, or BG > 300 mg/dl]. All exercise studies were performed in the late morning, after hyperglycemia had been corrected and steady-state conditions (plasma glucose < 120 mg/dl, basal insulin infusion) had been maintained for > or = 90 min. Blood samples for IL-6, growth factors, and counterregulatory hormones were drawn at pre-, end-, and 30 min postexercise time points. At all time points, circulating IL-6 was lowest in BG < 150 and progressively higher in the other three groups. The exercise-induced increment also followed a similar dose-response pattern (BG < 150, 0.6 +/- 0.2 ng/ml; BG 151-200, 1.2 +/- 0.8 ng/ml; BG 201-300, 2.1 +/- 1.1 ng/ml; BG > 300, 3.2 +/- 1.4 ng/ml). Other measured variables (growth hormone, IGF-I, glucagon, epinephrine, cortisol) were not influenced by prior hyperglycemia. Recent prior hyperglycemia markedly influenced baseline and exercise-induced levels of IL-6 in a group of peripubertal children with type 1 diabetes. While exercise is widely encouraged and indeed often considered part of diabetic management, our data underscore the necessity to completely understand all adaptive mechanisms associated with physical activity, particularly in the context of the developing diabetic child.  相似文献   

15.
Body temperature and metabolic responses to 2 h treadmill exercise in dogs given glucose intravenously (25-30 mg.kg-1 X min-1 throughout the run) were compared with those measured in the same animals with elevated plasma FFA concentrations (soya bean oil ingestion + intravenous heparin) and in control experiments (24 h fasting). In comparison with control conditions enhanced glucose availability for the working muscles caused a reduction in the exercise-induced increases in both rectal (by 0.9 +/- 0.11 degree C) and muscle (by 0.9 +/- 0.16 degree C) temperatures, a lower rate of oxygen uptake (by 16%) and an elevated respiratory exchange ratio. A tendency towards enhanced body temperature responses to exercise, accompanied by increases in VO2 and cardiac frequency was noted in dogs with elevated plasma FFA concentrations as compared with the control animals. The estimated amount of heat effectively dissipated from the body, expressed as a fraction of heat load (thermoregulatory efficiency) was significantly higher in dogs infused with glucose (0.962 +/- 0.0035), than in the controls (0.947 +/- 0.0043) and those with elevated plasma FFA concentrations (0.931 +/- 0.0029). It is concluded that the increased contribution of carbohydrates to the energy yield during exercise results in a marked attenuation of hyperthermia, associated with a reduced metabolic rate and improved thermoregulatory efficiency.  相似文献   

16.
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.  相似文献   

17.
Female rats swam for 2-h to determine the temporal relationship between triglyceride (TG) repletion and TG lipase activity in the heart during recovery from exercise. Immediately after the exercise, plasma free fatty acids (FFA) had increased from a resting value of 0.44 +/- 0.04 to 0.84 +/- 0.04 mM. Heart TG concentration was reduced 75%, whereas the glycogen level was decreased 34% below control. TG lipase activity was elevated 33% above control activity. One hour after the end of the exercise, lipolytic activity was still 26% above control and did not return to the resting level until the 4th h of recovery. The cardiac TG concentration was back to control levels by the 2nd h after the swim. Plasma FFA concentrations remained elevated during the first 4 h of recovery and were back to the control level by h 8. Cardiac glycogen was "supercompensated" during recovery h 1 and 2 and returned to the preexercise level by h 4. These data indicate that TG is being synthesized in the heart while lipolytic enzyme activity is elevated above control levels. This points out that the rate of TG synthesis is in excess of the hydrolysis. Since plasma FFA concentrations are elevated during periods of augmented TG synthesis, substrate availability, namely plasma FFA, may play a key role in regulating the size of the intracellular TG pool.  相似文献   

18.
The effects of glucose ingestion on the changes in blood glucose, FFA, insulin and glucagon levels induced by a prolonged exercise at about 50% of maximal oxygen uptake were investigated. Healthy volunteers were submitted to the following procedures: 1. a control test at rest consisting of the ingestion of 100 g glucose, 2. an exercise test without, or 3. with ingestion of 100 g of glucose. Exercise without glucose induced a progressive decrease in blood glucose and plasma insulin; plasma glucagon rose significantly from the 60th min onward (+45 pg/ml), the maximal increase being recorded during the 4th h of exercise (+135 pg/ml); plasma FFA rose significantly from the 60th min onward and reached their maximal values during the 4th h of exercise (2177 +/- 144 muEq/l, m +/- SE). Exercise with glucose ingestion blunted almost completely the normal insulin response to glucose. Under these conditions, exercise did not increase plasma glucagon before the 210th min; similarly, the exercise-induced increase in plasma FFA was markedly delayed and reduced by about 60%. It is suggested that glucose availability reduces exercise-induced glucagon secretion and, possibly consequently, FFA mobilization.  相似文献   

19.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

20.
Although the importance of glutathione in protection against oxidative stress is well recognized, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13-14) aged 20-30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH) decreased by 13% with exercise. Of the measured red blood cell (RBC) antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号