首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenous DHA is converted by human platelets to 14- and 11- HDHE and by human neutrophils mainly to 7- HDHE . Human platelets prelabeled with 14C-DHA, 14C-EPA and 14C-AA and stimulated with thrombin release and metabolize DHA only in trace amounts as compared to EPA and AA. 14C-DHA is incorporated into the 2-position of platelet phospholipids and occurs predominantly in phosphatidylethanolamine. DHA and EPA were also incorporated by dietary means into phospholipids of platelets and neutrophils. In resting platelets free DHA as well as free AA and EPA are not detectable. In platelets stimulated ex vivo with thrombin DHA is not significantly released which is in contrast to EPA and AA. After stimulation, 14- HDHE is found only in trace amounts as compared to 12-HETE and 12- HEPE . In DHA enriched neutrophils formation of HDHEs cannot be demonstrated after stimulation with ionophore A 23187. We conclude that even after dietary enrichment of DHA in phospholipids of platelets and neutrophils the level of free DHA and/or formation of HDHEs might be too low to substantially affect arachidonic acid metabolism and related functions of these cells.  相似文献   

2.
Lipid peroxidation of docosahexaenoic (22:6; n-3) acid (DHA) is elevated in the CNS in patients with Alzheimer's disease and in animal models of seizure and ethanol withdrawal. One product of DHA oxidation is trans -4-hydroxy-2-hexenal (HHE), a six carbon analog of the n-6 fatty acid derived trans -4-hydroxy-2-nonenal (HNE). In this work, we studied the neurotoxic potential of HHE. HHE and HNE were toxic to primary cultures of cerebral cortical neurons with LD50's of 23 and 18 μmol/L, respectively. Toxicity was prevented by the addition of thiol scavengers. HHE and HNE depleted neuronal GSH content identically with depletion observed with 10 μmol/L of either compound. Using an antibody raised against HHE–protein adducts, we show that HHE modified specific proteins of 75, 50, and 45 kDa in concentration- and time-dependent manners. The time-dependent formation of HHE differed from that of F4-neuroprostanes following in vitro DHA oxidation likely as a result of the different oxidation pathways involved. Using purified mitochondrial aldehyde dehydrogenase ALDH5A, we found that HHE was oxidized 6.5-fold less efficiently than HNE. Our data demonstrate that HHE and HNE have similarities but also differences in their neurotoxic mechanisms and metabolism.  相似文献   

3.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

4.
The concentration-dependent metabolism of 1-(14)C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [(14)C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-(14)C]20:5n-3 to [3-(14)C]22:6n-3 was more efficient than that of [1-(14)C]20:4n-6 to [3-(14)C]22:5n-6. At low substrate concentration (4 microM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 microM). The conversion of [1-(14)C]22:5n-3 to [1-(14)C]22:6n-3 was 1.7 times more efficient than that of [1-(14)C]22:4n-6 to [1-(14)C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-(14)C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-(14)C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-(14)C]20:4n-6 or [1-(14)C]22:4n-6 to [(14)C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-(14)C]20:5n-3 and [1-(14)C]22:5n-3 to [(14)C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

5.
[14C]22:6 (docosahexaenoic acid) was rapidly incorporated into cellular lipids in rabbit alveolar macrophages. After removal of free [14C]22:6, the radioactivity in diacyl-glycerophosphocholine (GPC) gradually decreased with a concomitant increase in [14C]22:6 in alkylacyl-GPC and alkenylacyl-glycerophosphoethanolamine (GPE), indicating that [14C]22:6 was transferred from diacyl-GPC to these ether lipid fractions. In fact, macrophage microsomes were shown to catalyze the transfer of [14C]22:6 from exogenously added diacyl-GPC to 1-alkyl-GPC (lyso platelet-activating factor) and 1-alkenyl-GPE. These results are the first evidence for the involvement of the transacylation system in the metabolism of C22 polyunsaturated fatty acids and lyso platelet-activating factor.  相似文献   

6.
Primary hepatocytes from wild northern pike Esox lucius were incubated with radiolabelled linolenic acid ([l-14C]-18:3(n-3)) to assess their ability to synthesize docosahexaenoic acid [22:6(n-3)]. The distribution of radioactivity in lipid classes and hepatocyte polyunsaturated fatty acids (PUFA) was measured over the time-course of 24h. The majority of radioactivity from [l-14C]-18:3(n-3) was recovered in hepatocyte triacylglycerols (TAG) and phosphatidylcholine (PC). The levels of radioactivity in TAG and in most of phospholipids, including PC, increased significantly over the incubation period. Radioactivity from [1-14C]-18:3(n-3) was recovered in several hepatocyte PUFA, including 22:6(n-3), and the Δ6 and Δ5-desaturation products 18:4(n-3) and 20:5(n-3). The presence of radioactivity in C24 (n-3) PUFA may be evidence that the biosynthesis of 22:6(n-3) in pike proceeds via a pathway independent of Δ4-desaturation. Analysis by radio gas chromatography revealed that radiolabelled 24:6(n-3) was present among the desaturation and elongation products of [l-14C]-18:3(n-3). The results establish that, under the in vitro conditions employed, pike hepatocytes are able to convert linolenic acid to 20:5(n-3) and 22:6(n-3).  相似文献   

7.
Enrichment of Neuro 2A cells with docosahexaenoic acid (22:6n-3) decreased apoptotic cell death induced by serum starvation as evidenced by the reduced DNA fragmentation and caspase-3 activity. The protective effect of 22:6n-3 became evident only after at least 24 h of enrichment before serum starvation and was potentiated as a function of the enrichment period. During enrichment 22:6n-3 incorporated into phosphatidylserine (PS) steadily, resulting in a significant increase in the total PS content. Similar treatment with oleic acid (18:1n-9) neither altered PS content nor resulted in protective effect. Hindering PS accumulation by enriching cells in a serine-free medium diminished the protective effect of 22:6n-3. Membrane translocation of Raf-1 was significantly enhanced by 22:6n-3 enrichment in Neuro 2A cells. Consistently, in vitro biomolecular interaction between PS/phosphatidylethanolamine /phosphatidylcholine liposomes, and Raf-1 increased in a PS concentration-dependent manner. Collectively, enrichment of neuronal cells with 22:6n-3 increases the PS content and Raf-1 translocation, down-regulates caspase-3 activity, and prevents apoptotic cell death. Both the antiapoptotic effect of 22:6n-3 and Raf-1 translocation are sensitive to 22:6n-3 enrichment-induced PS accumulation, strongly suggesting that the protective effect of 22:6n-3 may be mediated at least in part through the promoted accumulation of PS in neuronal membranes.  相似文献   

8.
The concentrations of prostaglandins PGE3 and PGF were 214 and 1500 ng/g wet trout gill tissue, respectively. A new prostaglandin, tentatively identified by gas chromatography/mass spectrometry as C22-PGF (590 ng/g wet tissue) was discovered. This was synthesized from docosahexaenoic acid.  相似文献   

9.
Phospholipids containing docosahexaenoic acid (22:6n-3) have been proposed to be required as conformational cofactors for the functional assembly of membrane proteins such as rhodopsin, ion pumps and the various complexes of the mitochondrial electron transport chain (Infante, 1987, Mol. Cell. Biochem. 74, 111-116; Infante and Huszagh, 2000, FEBS Lett. 468, 1-5). This hypothesis predicts that high-frequency contraction muscles, which are endowed with a high content of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and mitochondrial respiration enzymes, would have higher concentrations of 22:6n-3-containing phospholipids when compared with other muscles in the same species known to have a much lower contraction frequency. We have analyzed the fatty acid composition of ruby-throated hummingbird (Archilochus colubris) pectoral and leg muscles and of rattlesnake (Crotalus atrox) shaker and ventral muscles. We have found that hummingbird pectoral muscles, which are high contraction frequency muscles with the highest known respiratory rate among vertebrates, have a 22:6n-3 concentration of 20.8% vs. 4.9% for the low frequency leg muscles. Similarly, rattler muscles in rattlesnakes, also high contraction frequency muscles, have a higher 22:6n-3 concentration than that of their ventral muscles (15.1% vs. 10.6%, respectively). These results are consistent with a specific molecular role for 22:6n-3-containing phospholipids, as proposed.  相似文献   

10.
The intracellular localization of the oxidation of [2-14C]adrenic acid (22:4(n-6)) and [1-14C]docosahexaenoic acid (22:6(n-3)) was studied in isolated liver cells. The oxidation of 22:4(n-6) was 2-3-times more rapid than the oxidation of 22:6(n-3), [1-14C]arachidonic acid (20:4(n-6)) or [1-14C]oleic acid (18:1). (+)-Decanoylcarnitine and lactate, both known to inhibit mitochondrial beta-oxidation, reduced the oxidation of 18:1 distinctly more efficiently than with 22:4(n-6) and 22:6(n-3). In liver cells from rats fed a diet containing partially hydrogenated fish oil, the oxidation of 22:6(n-6) and 22:6(n-3) was increased by 30-40% compared with cells from rats fed a standard pellet diet. With 18:1 as substrate, the amount of fatty acid oxidized was very similar in cells from animals fed standard pellets or partially hydrogenated fish oil. Shortened fatty acids were not produced from [5,6,8,9,11,12,14,15-3H]arachidonic acid. In hepatocytes from rats starved and refed 20% fructose, a large fraction of 14C from 22:4 was recovered in 14C-labelled C14-C18 fatty acids. Oxidation of 22:4 thus caused a high specific activity of the extramitochondrial pool of acetyl-CoA. The results suggest that 22:4(n-6) and to some extent 22:6(n-3) are oxidized by peroxisomal beta-oxidation and by this are retroconverted to arachidonic acid and eicosapentaenoic acid.  相似文献   

11.
Docosahexaenoic acid (DHA) has long been recognized for its beneficial effect in humans, but its biosynthetic pathway has not been clearly established until recently. According to Sprecher, in mammals, DHA is synthesized via a retro-conversion process in peroxisomes-the aerobic delta4 desaturation-independent pathway. Recent identification of a Thraustochytrium delta4 desaturase indicates that delta4 desaturation is indeed involved in DHA synthesis in Thraustochytrium. More interestingly, an alternative pathway for DHA biosynthesis-the anaerobic polyketide synthase pathway was also reported recently to occur in Schizochytrium, another member of the Thraustochytriidae. This mini-review attempts to assess the latest research on these distinct pathways for DHA biosynthesis.  相似文献   

12.
The effect of coconut water (CW) on biomass and docosahexaenoic acid (DHA, C22:6 n3) formation by Schizochytrium mangrovei Sk-02 was studied in a yeast extract-diluted sea water medium. Optimal CW-level was ca. 33% (v/v), resulting in a biomass level of 28 g/l with a DHA-content of 20% (w/w) or 6 g DHA/l, almost 50% higher than in non-supplemented cultures at the same initial sugar level. Study on the growth-promoting effects of coconut water suggested that it could be (partially) mimicked by addition of trace elements; the fatty acids present in CW did not appear to be incorporated or effect fatty acid formation by the organism. CW-addition was also effective in media with other nitrogen sources such as casitone, peptone and tryptone. Its inclusion (at 50% v/v) increased biomass levels two-to-three-fold with concomitant increases in the DHA-level.  相似文献   

13.
Liquid residues from beer (RB) and potato (RP) processing were evaluated as carbon sources for the production of docosahexaenoic acid (C22:6n-3, DHA) by two native Thraustochytriidae sp., M12-X1 and C41, in shaking flask experiments. Results were compared with those obtained in the fermentations of glucose, maltose, soluble starch and ethanol. Both strains produced the highest biomass concentration (2.3 g/L) in the fermentation of RB supplemented with nitrogen sources [yeast extract (YE) and monosodium glutamate (MSG)]. DHA content in the fatty acids produced by the native thraustochytrids was dependent on the fermented carbon source; the fatty acids from biomass grown on carbon sources that permitted a lower growth rate contained more DHA. The highest DHA productivity [55.1 mg/(day L)] was obtained in the fermentation of RB-YE-MSG by M12-X1 strain. In this medium, M12-X1 strain grew at a specific growth rate of 0.014 h?1 and total fatty acid content in the biomass was 41.3%. Production of DHA by M12-X1 strain followed a non-growth rate associated pattern and DHA content in the biomass decreased significantly after growth ceased.  相似文献   

14.
The concentration-dependent metabolism of 1-14C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [14C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-14C]20:5n-3 to [3-14C]22:6n-3 was more efficient than that of [1-14C]20:4n-6 to [3-14C]22:5n-6. At low substrate concentration (4 μM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 μM). The conversion of [1-14C]22:5n-3 to [1-14C]22:6n-3 was 1.7 times more efficient than that of [1-14C]22:4n-6 to [1-14C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-14C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-14C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-14C]20:4n-6 or [1-14C]22:4n-6 to [14C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-14C]20:5n-3 and [1-14C]22:5n-3 to [14C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

15.
The class of long chain polyunsaturated fatty acids known as omega-3 are believed to be involved in prevention of a number of human afflictions. The mode of action for two of the most common omega-3 fatty acids, linolenic 18:3 delta 9,12,15 and docosahexaenoic 22:6 delta 4,7,10,13,16,19 (DHA), is not known. One suggestion is that they may be incorporated into membranes and there provide some specific function. Here we compare the effects of DHA and its metabolic precursor linolenic acid on the membrane properties of fluidity, fusion and permeability. The fatty acids were investigated as both free fatty acids and mixed chain 18:0, 18:3 and 18:0, 22:6 phosphatidylcholines (PCs). Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and a series of anthracene stearic acid probes indicates 20 mol% incorporation of either fatty acid into dipalmitoylphosphatidylcholine bilayers broadens and depresses the temperature of the phase transition, but has almost no effect on fluidity in the liquid crystalline state. Similar fluidity was also observed in the liquid crystalline bilayers of the mixed chain PCs using the same set of fluorescent fatty acid probes. In contrast, DHA as a free fatty acid or as part of a mixed chain PC, causes a much greater enhancement than linolenic acid of the rates of fusion and permeability as monitored by fluorescence resonance energy transfer and aqueous compartment mixing (fusion) and by lipid vesicle swelling in isotonic erythritol, (permeability). These experiments establish a clear distinction between the effects of linolenic acid and DHA in membranes.  相似文献   

16.
Retroconversion of docosahexaenoic acid (DHA, 22:6(n-3)) to eicosapentaenoic acid (EPA, 20:5(n-3)) was studied in isolated rat liver cells. 20% of the substrate was retroconverted to EPA in control cells by one cycle of beta-oxidation probably with delta 4 enoyl CoA reductase and delta 3, delta 2 enoyl CoA isomerase as auxiliary enzymes. This conversion was not stimulated by (-)-carnitine and was not inhibited by the addition of (+)-decanoylcarnitine. In hepatocytes from fasted rats little EPA was formed from DHA. These results strongly suggest that the retroconversion of DHA to EPA is a peroxisomal function. Retroconverted EPA, produced from DHA was rapidly incorporated in triacylglycerol, the phosphatidylcholine and phosphatidyletanolamine fractions. During longer incubation time EPA was partly removed from the phospholipid fractions, chain-elongated to 22:5(n-3) and incorporated in the triacylglycerol fraction.  相似文献   

17.
The enzyme responsible for 15-lipoxygenation of arachidonic acid was purified to homogeneity from human eosinophil-enriched leukocytes using a combination of ammonium sulfate precipitation, hydrophobic interaction chromatography, and high pressure liquid chromatography on hydroxyapatite and cation-exchange columns. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein revealed a single major band (apparent Mr 70,000). Amino acid sequence analysis yielded a single N-terminal sequence. Comparison of the N-terminal 15 residues reveals 71% sequence identity to the rabbit reticulocyte lipoxygenase and 36% sequence identity to the rat basophilic leukemia 5-lipoxygenase. In contrast, sequence identity to the soybean lipoxygenase-1 is not observed. These results demonstrate that human 15-lipoxygenase can be isolated from eosinophil-enriched leukocytes and is accessible for direct sequence analysis. Furthermore, we present initial evidence that the mammalian lipoxygenases constitute an homologous family of enzymes. The availability of homogeneous human 15-lipoxygenase will play a key role in elucidating other relationships in this family of enzymes.  相似文献   

18.
The fatty acid composition of phosphatidylcholine (PC) formed by base-exchange was examined in rat brain membranes in vitro. The free choline incorporated into subspecies of PC by this phospholipase-D type activity can be distinguished from that which might enter indirectly via the last enzyme of the de novo pathway for phospholipid biosynthesis, cholinephosphotransferase, by its ionic requirements. Choline base-exchange in lysed synaptosomes is optimal when assayed at extracellular (mM) calcium concentrations and is blocked by magnesium. As much as 40% of the choline incorporated by base-exchange into rat brain membranes was recovered in subspecies of PC, representing no more than 10% of the total PC pool, which contained docosahexaenoic acid (22:6(n-3)). Docosahexaenoic acid is enriched in electrically-excitable membranes and its content in phospholipids of rat and human brain change during early development and increase with age.  相似文献   

19.
Synthesis of lipoxygenase metabolites of [14C]arachidonic acid by mouse spleen lymphocyte cultures was inhibited by the leukocyte product 15-hydroxy-eicosatetraenoic acid (15-HETE) in a dose-dependent manner. In parallel experiments, the influence of 15-HETE on mitogenesis in spleen lymphocyte cultures was examined. 15-HETE at concentrations similar to those which inhibited cellular lipoxygenases progressively inhibited mitogenesis induced by the T-cell mitogen PHA but had no significant effect on the mitogenic response to the B-cell mitogen LPS. The inhibitory response was maximal when 15-HETE was added within 8 hr of exposure to PHA. Several analogs of 15-HETE having progressively fewer double bonds were tested in the same systems. 15-OH,20:3 had approximately the same potency as 15-HETE in inhibiting both mitogenesis and formation of metabolites from [14C]arachidonic acid. 15-OH, 20:2 and 15-OH,20:0 were much less active in either assay. Mitogenesis, induced in spleen cell cultures by the tumor promoter phorbol myristate acetate, was also blocked by 15-HETE. These experiments indicate that lipoxygenase metabolites of arachidonic acid may play an important role in T-lymphocyte blastogenesis and suggest that 15-HETE, via its ability to selectively inhibit cellular lipoxygenases, may function as an endogenous regulator of T-lymphocyte responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号